期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
End-to-end dilated convolution network for document image semantic segmentation 被引量:8
1
作者 XU Can-hui SHI Cao CHEN Yi-nong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1765-1774,共10页
Semantic segmentation is a crucial step for document understanding.In this paper,an NVIDIA Jetson Nano-based platform is applied for implementing semantic segmentation for teaching artificial intelligence concepts and... Semantic segmentation is a crucial step for document understanding.In this paper,an NVIDIA Jetson Nano-based platform is applied for implementing semantic segmentation for teaching artificial intelligence concepts and programming.To extract semantic structures from document images,we present an end-to-end dilated convolution network architecture.Dilated convolutions have well-known advantages for extracting multi-scale context information without losing spatial resolution.Our model utilizes dilated convolutions with residual network to represent the image features and predicting pixel labels.The convolution part works as feature extractor to obtain multidimensional and hierarchical image features.The consecutive deconvolution is used for producing full resolution segmentation prediction.The probability of each pixel decides its predefined semantic class label.To understand segmentation granularity,we compare performances at three different levels.From fine grained class to coarse class levels,the proposed dilated convolution network architecture is evaluated on three document datasets.The experimental results have shown that both semantic data distribution imbalance and network depth are import factors that influence the document’s semantic segmentation performances.The research is aimed at offering an education resource for teaching artificial intelligence concepts and techniques. 展开更多
关键词 semantic segmentation document images deep learning NVIDIA jetson nano
在线阅读 下载PDF
A New Wavelet-Based Document Image Segmentation Scheme
2
作者 赵健 李道京 +1 位作者 俞卞章 耿军平 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第3期86-90,共5页
The document image segmentation is very useful for printing, faxing and data processing. An algorithm is developed for segmenting and classifying document image. Feature used for classification is based on the histogr... The document image segmentation is very useful for printing, faxing and data processing. An algorithm is developed for segmenting and classifying document image. Feature used for classification is based on the histogram distribution pattern of different image classes. The important attribute of the algorithm is using wavelet correlation image to enhance raw image's pattern, so the classification accuracy is improved. In this paper document image is divided into four types; background, photo, text and graph. Firstly, the document image background has been distingusished easily by former normally method;secondly, three image types will be distinguished by their typical histograms, in order to make histograms feature clearer, each resolution's HH wavelet subimage is used to add to the raw image at their resolution. At last, the photo, text and praph have been devided according to how the feature fit to the Laplacian distrbution by 2 and L . Simulations show that classification accuracy is significantly improved. The comparison with related shows that our algorithm provides both lower classification error rates and better visual results. 展开更多
关键词 document image SEGMENTATION CLASSIFICATION Wavelet Histogram.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部