In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.T...In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.The control accuracy of ISP is fundamentally circumscribed by various disturbance torques in rotating shaft.Therefore,a dynamic model of ISP incorporating composite perturbations is established with regard to the stabilization of axis in the inertial reference frame.Subsequently,an online estimator for control loop uncertainties based on the sliding mode control algorithm is designed to estimate the aggregate disturbances of various parameters uncertainties and other unmodeled disturbances that cannot be accurately calibrated.Finally,the proposed DSMO is integrated into a classical proportional-integral-derivative(PID)control scheme,utilizing feedforward approach to compensate the composite disturbance in the control loop online.The effectiveness of the proposed disturbance observer is validated through simulation and hardware experimentation,demonstrating a significant improvement in the dynamic control performance and robustness of the classical PID controller extensively utilized in the field of engineering.展开更多
为探究在集散式控制系统(distributed control system,DCS)危险排除过程中控制员不同信息搜索策略对排险任务绩效的影响及认知负荷的中介效应,基于虚拟现实技术、皮肤电采样和眼动追踪技术构建模拟DCS工控平台,招募20名相关专业被试参...为探究在集散式控制系统(distributed control system,DCS)危险排除过程中控制员不同信息搜索策略对排险任务绩效的影响及认知负荷的中介效应,基于虚拟现实技术、皮肤电采样和眼动追踪技术构建模拟DCS工控平台,招募20名相关专业被试参与模拟排险实验并对其认知负荷及排险绩效进行量化,使用眼动轨迹匹配法判断被试的信息搜索模式,研究认知负荷的中介效应及中介机理。研究结果表明:不同信息搜索策略会显著影响任务绩效;认知负荷对该影响的中介效应高达89.66%,表明信息搜索策略主要通过影响认知负荷来间接作用于排险任务绩效,认知负荷越高,任务绩效越低;逻辑系统搜索策略能通过高效图式匹配减少认知资源消耗,显著抑制认知负荷增长,任务绩效表现最佳;空间系统搜索较难抑制认知负荷,任务绩效较差;随机搜索被试认知负荷显著高于其他组,绩效表现最差;此外,不同认知负荷水平下被试的信息搜索策略没有明显转变倾向。研究结果可为DCS控制人员的考核和培训提供理论支撑。展开更多
Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate trackin...Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach.展开更多
针对直流微电网中储能系统功率波动、负载侧负荷频繁投切等不确定因素引起母线电压产生波动的问题,以储能系统中三相交错并联双向DC-DC变换器为研究对象,提出一种基于级联有限时间扩张状态观测器(cascade finite-time extended state ob...针对直流微电网中储能系统功率波动、负载侧负荷频繁投切等不确定因素引起母线电压产生波动的问题,以储能系统中三相交错并联双向DC-DC变换器为研究对象,提出一种基于级联有限时间扩张状态观测器(cascade finite-time extended state observer,CFT-ESO)的微分平坦和改进型超螺旋滑模双闭环复合控制策略.首先,建立三相交错并联双向DC-DC变换器的数学模型,并根据微分平坦理论将其直流系统转化为微分平坦系统,结合两级具有快速收敛性的有限时间扩张状态观测器提高对系统集总扰动的估计精度.其次,采用内环微分平坦控制、外环改进型超螺旋滑模控制的双闭环控制系统,既能提高系统动态响应过程,又能利用高阶滑模控制算法抑制抖振,同时解决变换器升压模式中非最小相位问题.再次,通过Lyapunov理论证明控制系统的稳定性.最后,利用MATLAB/Simulink仿真软件以及搭建实验平台对控制策略进行验证,结果表明,本文所提控制策略能够很好地抵抗扰动,提高系统的暂态性能.展开更多
Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturba...Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.展开更多
在两级式AC-DC变换器中,前级功率因数校正(power factor correction,PFC)固有的瞬时功率波动特性会造成母线电压存在二倍频纹波,影响后级CLLLC谐振变换器的输出电压质量。针对以上问题,该文提出了基于二阶广义积分(second order general...在两级式AC-DC变换器中,前级功率因数校正(power factor correction,PFC)固有的瞬时功率波动特性会造成母线电压存在二倍频纹波,影响后级CLLLC谐振变换器的输出电压质量。针对以上问题,该文提出了基于二阶广义积分(second order generalized integral,SOGI)的可变增益母线电压纹波前馈控制方法。采用SOGI提取母线电压纹波信息,基于品质因数Q与电压增益的关系和母线电压纹波对归一化频率的影响,解析了母线电压纹波对CLLLC谐振变换器输出电压的影响机理,得到Q值与前馈增益系数Ka的关系,采用仿真寻优加数据拟合的方法得到前馈可变增益系数曲线。仿真和实验结果表明,相比于无前馈控制,所提控制方法对CLLLC谐振变换器的输出电压纹波具有较好的抑制效果,输出电压纹波降低了72%,验证了所提算法的有效性。展开更多
Conventional PI control encounters some problems when dealing with large lag process in the presence of parameter uncertainties.For the typical first-order process,an observerbased linear active disturbance rejection ...Conventional PI control encounters some problems when dealing with large lag process in the presence of parameter uncertainties.For the typical first-order process,an observerbased linear active disturbance rejection control(LADRC) scheme is presented to cope with the difficulties,and a reduced-order observer scheme is proposed further.Some quantitative dynamic results with regard to non-overshoot characteristics are obtained.Finally,the performance boundaries of LADRC and PI control are explicitly compared with each other,which shows that the former is more superior in most cases.展开更多
The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the trackin...The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the tracking error are derived. It is shown that the system outputs can be guaranteed to converge to desired trajectories in the absence of external disturbances and output measurement noises. And in the presence of state disturbances and measurement noises, the tracking error will be bounded uniformly. A numerical simulation example is presented to validate the effectiveness of the proposed scheme.展开更多
The iterative learning control (ILC) has been demon-strated to be capable of considerably improving the tracking perfor-mance of systems which are affected by the iteration-independent disturbance. However, the achi...The iterative learning control (ILC) has been demon-strated to be capable of considerably improving the tracking perfor-mance of systems which are affected by the iteration-independent disturbance. However, the achievable performance is greatly degraded when iteration-dependent, stochastic disturbances are pre-sented. This paper considers the robustness of the ILC algorithm for the nonlinear system in presence of stochastic measurement disturbances. The robust convergence of the P-type ILC algorithm is firstly addressed, and then an improved ILC algorithm with a decreasing gain is proposed. Theoretical analyses show that the proposed algorithm can guarantee that the tracking error of the nonlinear system tends to zero in presence of measurement dis-turbances. The analysis is also supported by a numerical example.展开更多
It is now well known that the time-varying sliding mode control (TVSMC) is characterized by its global robustness against matched model uncertainties and disturbances. The accurate tracking problem of the mechanical...It is now well known that the time-varying sliding mode control (TVSMC) is characterized by its global robustness against matched model uncertainties and disturbances. The accurate tracking problem of the mechanical system in the presence of the parametric uncertainty and external disturbance is addressed in the TVSMC framework. Firstly, an exponential TVSMC algorithm is designed and the main features are analyzed. Especially, the control parameter is obtained by solving an optimal problem. Subsequently, the global chattering problem in TVSMC is considered. To reduce the static error resulting from the continuous TVSMC algorithm, a disturbance observer based time-varying sliding mode control (DOTVSMC) algorithm is presented. The detailed design principle and the stability of the closed-loop system under the composite controller are provided. Simulation results verify the effectiveness of the proposed algorithm.展开更多
Gob-area roof rupture movement is a key disturbance factor for gob-side entry retaining.The characteristics of gob-area sequential roof collapse of overlying strata and superposed disturbance mechanism for gob-side en...Gob-area roof rupture movement is a key disturbance factor for gob-side entry retaining.The characteristics of gob-area sequential roof collapse of overlying strata and superposed disturbance mechanism for gob-side entry retaining are obtained via physical simulation and theoretical analysis,in which the scope of disturbed strata is enlarged from main roof to fracture zone.The experiment reveals that as a working face advances,roof strata sequentially collapse from bottom to top and produce multiple disturbances to gob-side entry retaining.Key strata among the overlying strata control each collapse.Main roof subsidence is divided into three stages:flexure subsidence prior to rupture,rotational subsidence during rupture and compressive subsidence after rupture.The amounts of deformation evident in each of the three stages are 15%,55%and 30%,respectively.After the master stratum collapses,main roof subsidence approaches its maximum value.The final span of the key stratum determines the moment and cycling of gob-side entry retaining disturbances.Main roof subsidence influences the load on the filling wall.The sequential roof collapse of overlying strata results in fluctuations in the gob-side entry retaining deformation.Calculation formulae for the final span of the key stratum and the filling wall load are obtained via theoretical analysis.A control method for the stability of the gob-side entry retaining’s surrounding rock is proposed,which includes 3 measures:a“dual-layer”proactive anchorage support,roadside filling with dynamic strength matching and auxiliary support during disturbance.Finally,the gob-side entry retaining of the Xiaoqing mine E1403 working face is presented as an engineering case capable of verifying the validity of the research conclusions.展开更多
A novel control scheme of active disturbance rejection internal model control(ADRIMC) is proposed to improve the anti-interference ability and robustness for the dead-time process. The active anti-interference concept...A novel control scheme of active disturbance rejection internal model control(ADRIMC) is proposed to improve the anti-interference ability and robustness for the dead-time process. The active anti-interference concept is introduced into the internal model control(IMC) by analyzing the relationship between IMC and disturbance observer control(DOB). Further, a design process of disturbance filter is presented to realize the active anti-interference ability for ADRIMC scheme. The disturbance filter is used to estimate an equivalent disturbance consisting of both external disturbances and internal disturbances caused by model mismatches.Simulation results demonstrate that the proposed method possesses a good disturbance rejection performance, though losing some partial dynamic performance. In other words, the proposed method shows a tradeoff between the dynamic performance and the system robust.展开更多
Focusing on the three-dimensional guidance problem in case of target maneuvers and response delay of the autopilot, the missile guidance law utilizing active disturbance rejection control (ADRC) is proposed. Based o...Focusing on the three-dimensional guidance problem in case of target maneuvers and response delay of the autopilot, the missile guidance law utilizing active disturbance rejection control (ADRC) is proposed. Based on the nonlinear three-dimensional missile target engagement kinematics, the guidance model is es- tablished, The target acceleration is treated as a disturbance and the dynamics of the autopilot is considered by using a first-order model. A nonlinear continuous robust guidance law is designed by using a cascaded structure ADRC controller. In this method the disturbance is estimated by using the extended state observer (ESO) and compensated during each sampling period. Simulation results show that the proposed cascaded loop structure is a viable solution to the guidance law design and has strong robustness with respect to target maneuvers and response delay of the autopilot.展开更多
The optimal control problem for linear time-varying systems affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions is consider and a design procedure of a feedfo...The optimal control problem for linear time-varying systems affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions is consider and a design procedure of a feedforward and feedbaek optimal controller is presented. The condition of existence and uniqueness of the control law is given. The disturbanee observer is proposed to make the feedforward control law realizable physically. Simulation results demonstrate that the feedforward and feedbaek optimal control law is more effective and robust than the elassical state feedbaek control law with respect to external disturbanees.展开更多
The robust bounded flight control scheme is developed for the uncertain longitudinal flight dynamics of the fighter with control input saturation invoking the backstepping technique. To enhance the disturbance rejecti...The robust bounded flight control scheme is developed for the uncertain longitudinal flight dynamics of the fighter with control input saturation invoking the backstepping technique. To enhance the disturbance rejection ability of the robust flight control for fighters, the sliding mode disturbance observer is designed to estimate the compounded disturbance including the unknown external disturbance and the effect of the control input saturation. Based on the backstepping technique and the compounded disturbance estimated output, the robust bounded flight control scheme is proposed for the fighter with the unknown external disturbance and the control input saturation. The closed-loop system stability under the developed robust bounded flight control scheme is rigorously proved using the Lyapunov method and the uniformly asymptotical convergences of all closed-loop signals are guaranteed. Finally, simulation results are presented to show the effectiveness of the proposed robust bounded flight control scheme for the uncertain longitudinal flight dynamics of the fighter.展开更多
基金supported by the National Natural Science Foundation of China(61803015).
文摘In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.The control accuracy of ISP is fundamentally circumscribed by various disturbance torques in rotating shaft.Therefore,a dynamic model of ISP incorporating composite perturbations is established with regard to the stabilization of axis in the inertial reference frame.Subsequently,an online estimator for control loop uncertainties based on the sliding mode control algorithm is designed to estimate the aggregate disturbances of various parameters uncertainties and other unmodeled disturbances that cannot be accurately calibrated.Finally,the proposed DSMO is integrated into a classical proportional-integral-derivative(PID)control scheme,utilizing feedforward approach to compensate the composite disturbance in the control loop online.The effectiveness of the proposed disturbance observer is validated through simulation and hardware experimentation,demonstrating a significant improvement in the dynamic control performance and robustness of the classical PID controller extensively utilized in the field of engineering.
文摘为探究在集散式控制系统(distributed control system,DCS)危险排除过程中控制员不同信息搜索策略对排险任务绩效的影响及认知负荷的中介效应,基于虚拟现实技术、皮肤电采样和眼动追踪技术构建模拟DCS工控平台,招募20名相关专业被试参与模拟排险实验并对其认知负荷及排险绩效进行量化,使用眼动轨迹匹配法判断被试的信息搜索模式,研究认知负荷的中介效应及中介机理。研究结果表明:不同信息搜索策略会显著影响任务绩效;认知负荷对该影响的中介效应高达89.66%,表明信息搜索策略主要通过影响认知负荷来间接作用于排险任务绩效,认知负荷越高,任务绩效越低;逻辑系统搜索策略能通过高效图式匹配减少认知资源消耗,显著抑制认知负荷增长,任务绩效表现最佳;空间系统搜索较难抑制认知负荷,任务绩效较差;随机搜索被试认知负荷显著高于其他组,绩效表现最差;此外,不同认知负荷水平下被试的信息搜索策略没有明显转变倾向。研究结果可为DCS控制人员的考核和培训提供理论支撑。
基金the National Natural Science Foundation of China(No.52275062)and(No.52075262).
文摘Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach.
文摘针对直流微电网中储能系统功率波动、负载侧负荷频繁投切等不确定因素引起母线电压产生波动的问题,以储能系统中三相交错并联双向DC-DC变换器为研究对象,提出一种基于级联有限时间扩张状态观测器(cascade finite-time extended state observer,CFT-ESO)的微分平坦和改进型超螺旋滑模双闭环复合控制策略.首先,建立三相交错并联双向DC-DC变换器的数学模型,并根据微分平坦理论将其直流系统转化为微分平坦系统,结合两级具有快速收敛性的有限时间扩张状态观测器提高对系统集总扰动的估计精度.其次,采用内环微分平坦控制、外环改进型超螺旋滑模控制的双闭环控制系统,既能提高系统动态响应过程,又能利用高阶滑模控制算法抑制抖振,同时解决变换器升压模式中非最小相位问题.再次,通过Lyapunov理论证明控制系统的稳定性.最后,利用MATLAB/Simulink仿真软件以及搭建实验平台对控制策略进行验证,结果表明,本文所提控制策略能够很好地抵抗扰动,提高系统的暂态性能.
文摘Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.
基金supported by the National Natural Science Foundation of China(60774088)the National High Technology Research and Development Program of China(863 Program)(2009AA04Z132)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20090031110029)
文摘Conventional PI control encounters some problems when dealing with large lag process in the presence of parameter uncertainties.For the typical first-order process,an observerbased linear active disturbance rejection control(LADRC) scheme is presented to cope with the difficulties,and a reduced-order observer scheme is proposed further.Some quantitative dynamic results with regard to non-overshoot characteristics are obtained.Finally,the performance boundaries of LADRC and PI control are explicitly compared with each other,which shows that the former is more superior in most cases.
基金This project was supported by the National Natural Science Foundation of China (60074001) and the Natural ScienceFoundation of Shandong Province (Y2000G02)
文摘The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the tracking error are derived. It is shown that the system outputs can be guaranteed to converge to desired trajectories in the absence of external disturbances and output measurement noises. And in the presence of state disturbances and measurement noises, the tracking error will be bounded uniformly. A numerical simulation example is presented to validate the effectiveness of the proposed scheme.
基金supported by the National Natural Science Foundation of China (61203065 60834001)the Program of Open Laboratory Foundation of Control Engineering Key Discipline of Henan Provincial High Education (KG 2011-10)
文摘The iterative learning control (ILC) has been demon-strated to be capable of considerably improving the tracking perfor-mance of systems which are affected by the iteration-independent disturbance. However, the achievable performance is greatly degraded when iteration-dependent, stochastic disturbances are pre-sented. This paper considers the robustness of the ILC algorithm for the nonlinear system in presence of stochastic measurement disturbances. The robust convergence of the P-type ILC algorithm is firstly addressed, and then an improved ILC algorithm with a decreasing gain is proposed. Theoretical analyses show that the proposed algorithm can guarantee that the tracking error of the nonlinear system tends to zero in presence of measurement dis-turbances. The analysis is also supported by a numerical example.
基金supported by the National Natural Science Foundation of China (10872030)the Technology Innovation Programme of Beijing Institute of Technology (CX0428)
文摘It is now well known that the time-varying sliding mode control (TVSMC) is characterized by its global robustness against matched model uncertainties and disturbances. The accurate tracking problem of the mechanical system in the presence of the parametric uncertainty and external disturbance is addressed in the TVSMC framework. Firstly, an exponential TVSMC algorithm is designed and the main features are analyzed. Especially, the control parameter is obtained by solving an optimal problem. Subsequently, the global chattering problem in TVSMC is considered. To reduce the static error resulting from the continuous TVSMC algorithm, a disturbance observer based time-varying sliding mode control (DOTVSMC) algorithm is presented. The detailed design principle and the stability of the closed-loop system under the composite controller are provided. Simulation results verify the effectiveness of the proposed algorithm.
基金Project(51404251)supported by the National Natural Science Foundation of ChinaProject(BK20140198)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(PPZY2015A046)supported by the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Gob-area roof rupture movement is a key disturbance factor for gob-side entry retaining.The characteristics of gob-area sequential roof collapse of overlying strata and superposed disturbance mechanism for gob-side entry retaining are obtained via physical simulation and theoretical analysis,in which the scope of disturbed strata is enlarged from main roof to fracture zone.The experiment reveals that as a working face advances,roof strata sequentially collapse from bottom to top and produce multiple disturbances to gob-side entry retaining.Key strata among the overlying strata control each collapse.Main roof subsidence is divided into three stages:flexure subsidence prior to rupture,rotational subsidence during rupture and compressive subsidence after rupture.The amounts of deformation evident in each of the three stages are 15%,55%and 30%,respectively.After the master stratum collapses,main roof subsidence approaches its maximum value.The final span of the key stratum determines the moment and cycling of gob-side entry retaining disturbances.Main roof subsidence influences the load on the filling wall.The sequential roof collapse of overlying strata results in fluctuations in the gob-side entry retaining deformation.Calculation formulae for the final span of the key stratum and the filling wall load are obtained via theoretical analysis.A control method for the stability of the gob-side entry retaining’s surrounding rock is proposed,which includes 3 measures:a“dual-layer”proactive anchorage support,roadside filling with dynamic strength matching and auxiliary support during disturbance.Finally,the gob-side entry retaining of the Xiaoqing mine E1403 working face is presented as an engineering case capable of verifying the validity of the research conclusions.
基金Project(61273132)supported by the National Natural Foundation of ChinaProject(20110010010)supported by Higher School Specialized Research Fund for the Doctoral Program,China
文摘A novel control scheme of active disturbance rejection internal model control(ADRIMC) is proposed to improve the anti-interference ability and robustness for the dead-time process. The active anti-interference concept is introduced into the internal model control(IMC) by analyzing the relationship between IMC and disturbance observer control(DOB). Further, a design process of disturbance filter is presented to realize the active anti-interference ability for ADRIMC scheme. The disturbance filter is used to estimate an equivalent disturbance consisting of both external disturbances and internal disturbances caused by model mismatches.Simulation results demonstrate that the proposed method possesses a good disturbance rejection performance, though losing some partial dynamic performance. In other words, the proposed method shows a tradeoff between the dynamic performance and the system robust.
基金supported by the Aviation Science Foundation(2013ZC12004)
文摘Focusing on the three-dimensional guidance problem in case of target maneuvers and response delay of the autopilot, the missile guidance law utilizing active disturbance rejection control (ADRC) is proposed. Based on the nonlinear three-dimensional missile target engagement kinematics, the guidance model is es- tablished, The target acceleration is treated as a disturbance and the dynamics of the autopilot is considered by using a first-order model. A nonlinear continuous robust guidance law is designed by using a cascaded structure ADRC controller. In this method the disturbance is estimated by using the extended state observer (ESO) and compensated during each sampling period. Simulation results show that the proposed cascaded loop structure is a viable solution to the guidance law design and has strong robustness with respect to target maneuvers and response delay of the autopilot.
基金This project was supported by the National Natural Science Foundation of China (60074001) and the Natural ScienceFoundation of Shandong Province (Y2000G02)
文摘The optimal control problem for linear time-varying systems affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions is consider and a design procedure of a feedforward and feedbaek optimal controller is presented. The condition of existence and uniqueness of the control law is given. The disturbanee observer is proposed to make the feedforward control law realizable physically. Simulation results demonstrate that the feedforward and feedbaek optimal control law is more effective and robust than the elassical state feedbaek control law with respect to external disturbanees.
基金supported by the National Natural Science Foundation of China(61174102)the Jiangsu Natural Science Foundation of China(SBK20130033)+1 种基金the NUAA Fundamental Research Funds(NS2013028)the Specialized Research Fund for the Doctoral Program of Higher Education(20133218110013)
文摘The robust bounded flight control scheme is developed for the uncertain longitudinal flight dynamics of the fighter with control input saturation invoking the backstepping technique. To enhance the disturbance rejection ability of the robust flight control for fighters, the sliding mode disturbance observer is designed to estimate the compounded disturbance including the unknown external disturbance and the effect of the control input saturation. Based on the backstepping technique and the compounded disturbance estimated output, the robust bounded flight control scheme is proposed for the fighter with the unknown external disturbance and the control input saturation. The closed-loop system stability under the developed robust bounded flight control scheme is rigorously proved using the Lyapunov method and the uniformly asymptotical convergences of all closed-loop signals are guaranteed. Finally, simulation results are presented to show the effectiveness of the proposed robust bounded flight control scheme for the uncertain longitudinal flight dynamics of the fighter.