This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise co...This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising dur-ing measurements, thereby enhancing the robustness and stabi-lity of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference sig-nals utilizing local information and communication with neigh-bors. Subsequently, a fixed-time sliding mode controller is intro-duced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve dis-tributed average tracking of reference signals, and rigorous ana-lytical methods are employed to substantiate the fixed-time sta-bility. Finally, numerical simulation results are provided to vali-date the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.展开更多
In order to have a good understanding of the behavior of wet shotcrete as a support element interacting with the rock mass,mechanism of wet shotcrete interacting with rock in support systems was analyzed through theor...In order to have a good understanding of the behavior of wet shotcrete as a support element interacting with the rock mass,mechanism of wet shotcrete interacting with rock in support systems was analyzed through theoretical,numerical study and analytical analysis.A new model of distribution of rock stress state after wet shotcrete was applied,which includes shotcrete layer,composite layer,strengthening layer,plastic layer and elastic layer,and a full illustration of the rock mass stress state was given after shotcrete interacting with rock mass.At the same time,numerical analysis with FLAC gives a stress distribution along the monitor line,respectively,at the sidewall and roof of the tunnel.The displacement obviously decreases with the depth of rock,the tangential stress for tunnel supported by shotcrete is lower than that without shotcrete,and radial stress for tunnel supported by shotcrete is higher than that without shotcrete.It has been demonstrated by AIRY'S stress function,which gives a reasonable solution.Finally,the application of wet shotcrete in Jinfeng Gold Mine shows that the displacement of tunnel decreases obviously in sidewall and roof.展开更多
This paper addresses the cooperative control problem of multiple unmanned aerial vehicles(multi-UAV)systems.First,a new distributed consensus algorithm for second-order nonlinear multi-agent systems(MAS)is formulated ...This paper addresses the cooperative control problem of multiple unmanned aerial vehicles(multi-UAV)systems.First,a new distributed consensus algorithm for second-order nonlinear multi-agent systems(MAS)is formulated under the leader-following approach.The algorithm provides smooth input signals to the agents’control channels,which avoids the chattering effect generated by the conventional sliding mode-based control protocols.Second,a new formation control scheme is developed by integrating smooth distributed consensus control protocols into the geometric pattern model to achieve three-dimensional formation tracking.The Lyapunov theory is used to prove the stability and convergence of both distributed consensus and formation controllers.The effectiveness of the proposed algorithms is demonstrated through simulation results.展开更多
Grate process is an important step in grate-kiln pellet production.However,as a relatively closed system,the process on grate is inaccessible to direct detection,therefore,it is hard to control.As a result,mathematica...Grate process is an important step in grate-kiln pellet production.However,as a relatively closed system,the process on grate is inaccessible to direct detection,therefore,it is hard to control.As a result,mathematical models of temperature distribution,moisture distribution and oxidation degree distribution in pellet bed,with good universality,computation speed and calculation accuracy,are presented based on analysis of heat transfer and physical-chemical reactions during grate process.And real-time visualization of temperature,moisture and oxidation degree distribution in pellet bed during grate process is realized.Model validation is displayed,and the similarity of 91% is proved.The results can reveal real time status on grate,and provide a solid foundation for the subsequent study of artificial intelligence control system of pellet production.展开更多
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency...The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.展开更多
Remote control process system with distributed time-delay has attracted much attention in different fields.In this paper,non-linear remote control of a single tank process system with wireless network is considered.To...Remote control process system with distributed time-delay has attracted much attention in different fields.In this paper,non-linear remote control of a single tank process system with wireless network is considered.To deal with the distributed time-delay in a large-scale plant,the time-delay compensation controller based on DCS devices is designed by using operator theory and particle filter.Distributed control system(DCS)device is developed to monitor and control from the central monitoring room to each process.The particle filter is a probabilistic method to estimate unobservable information from observable information.First,remote control system and experimental equipment are introduced.Second,control system based on an operator theory is designed.Then,process system with distributed time-delay using particle filter is carried out.Finally,the actual experiment is conducted by using the proposed time-delay compensation controller.When estimating with the proposed method,the result is close to the case in which the distributed time-delay does not exist.The effectiveness of the proposed control system is confirmed by experiment results.展开更多
A retrofitted electro-hydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution(LUDV) system,taking boom hydrauli...A retrofitted electro-hydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution(LUDV) system,taking boom hydraulic system as an example and ignoring the leakage of hydraulic cylinder and the mass of oil in it,a force equilibrium equation and a continuous equation of hydraulic cylinder were set up. Based on the flow equation of electro-hydraulic proportional valve,the pressure passing through the valve and the difference of pressure were tested and analyzed. The results show that the difference of pressure does not change with load,and it approximates to 2.0 MPa. And then,assume the flow across the valve is directly proportional to spool displacement and is not influenced by load,a simplified model of electro-hydraulic system was put forward. At the same time,by analyzing the structure and load-bearing of boom instrument,and combining moment equivalent equation of manipulator with rotating law,the estimation methods and equations for such parameters as equivalent mass and bearing force of hydraulic cylinder were set up. Finally,the step response of flow of boom cylinder was tested when the electro-hydraulic proportional valve was controlled by the step current. Based on the experiment curve,the flow gain coefficient of valve is identified as 2.825×10-4 m3/(s·A) and the model is verified.展开更多
Discrete manufacturing workshops are confronted with problems of processing diverse products and strict real time requirements for data service calculation and manufacturing equipment,which makes it difficult to provi...Discrete manufacturing workshops are confronted with problems of processing diverse products and strict real time requirements for data service calculation and manufacturing equipment,which makes it difficult to provide real time feedback and compensation.In this study,a high-availability,high-performance,and high-concurrency digital twin reference model was constructed to satisfy a large number of manufacturing requirements.A multiterminal real-time interaction model and information aging classification rules for virtual and physical models were established.Moreover,a multiterminal virtual interaction model was proposed,and a generalized distributed computing service digital twinning system was developed.This digital twin system was considered a machine tool box processing line as an actual case.Consequently,a full closed-loop manufacturing process digital twin platform for physical request service,real-time response,and quality information feedback from iterations,which provides case guidance for subsequent factory digital twin systems,was realized.The proposed system can satisfy the requirements of multidevice big data computing services in modern manufacturing plants,as well as multiplatform,low-latency,and high-fidelity information visualization requirements for managers.Thus,this system is expected to play an important role in information factories.展开更多
Flow distribution in branch piping system is affected by flow characteristics and different geometric variations. Most of the flow distribution studies are performed with one-dimensional analysis to yield overall info...Flow distribution in branch piping system is affected by flow characteristics and different geometric variations. Most of the flow distribution studies are performed with one-dimensional analysis to yield overall information only. However, detailed analysis is required to find effects of design parameters on the flow distribution. For this aspect, three-dimensional turbulent flow analysis was performed to assess turbulence model performance and effects of upstream pressure and branch pipe geometry. Three different turbulence models of standard k-e model, realizable k-e model and standard k-co yield similar results, indicating small effects of turbulence models on flow characteristics analysis. Geometric variations include area ratio of main and branch pipes, branch pipe diameter, and connection shape of main and branch pipes. Among these parameters, area ratio and branch diameter and shape show strong effect on flow distribution due to high friction and minor loss. Uniform flow distribution is one of common requirements in the branch piping system and this can be achieved with rather high total loss design.展开更多
A Bayesian sequential testing method is proposed to evaluate system reliability index with reliability growth during development.The method develops a reliability growth model of repairable systems for failure censore...A Bayesian sequential testing method is proposed to evaluate system reliability index with reliability growth during development.The method develops a reliability growth model of repairable systems for failure censored test,and figures out the approach to determine the prior distribution of the system failure rate by applying the reliability growth model to incorporate the multistage test data collected from system development.Furthermore,the procedure for the Bayesian sequential testing is derived for the failure rate of the exponential life system,which enables the decision to terminate or continue development test.Finally,a numerical example is given to illustrate the efficiency of the proposed model and procedure.展开更多
Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process...Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified.展开更多
Based on the idea of backstepping design, distributedcoordinated tracking problems under directed topology are discussedfor multiple Euler-Lagrange (EL) systems. The dynamicleader case is considered. First, with the...Based on the idea of backstepping design, distributedcoordinated tracking problems under directed topology are discussedfor multiple Euler-Lagrange (EL) systems. The dynamicleader case is considered. First, with the parameter-linearity property,a distributed coordinated adaptive control scheme is proposedfor EL systems in the presence of parametric uncertainties.Then, subject to nonlinear uncertainties and external disturbances,an improved adaptive control algorithm is developed by usingneural-network (NN) approximation of nonlinear functions. Bothproposed algorithms can make tracking errors for each followerultimately bounded. The closed-loop systems are investigated byusing the combination of graph theory, Lyapunov theory, and BarbalatLemma. Numerical examples and comparisons with othermethods are provided to show the effectiveness of the proposedcontrol strategies.展开更多
In recent years,with the continuous development of multi-agent technology represented by unmanned aerial vehicle(UAV)swarm,consensus control has become a hot spot in academic research.In this paper,we put forward a di...In recent years,with the continuous development of multi-agent technology represented by unmanned aerial vehicle(UAV)swarm,consensus control has become a hot spot in academic research.In this paper,we put forward a discrete-time consensus protocol and obtain the necessary and sufficient conditions for the second-order consensus of the second-order multi-agent system with a fixed structure under the condition of no saturation input.The theoretical derivation verifies that the two eigenvalues of the Laplacian of the communication network matrix and the sampling period have an important effect on achieving consensus.Then we construct and verify sufficient conditions to achieve consensus under the condition of input saturation constraints.The results show that consensus can be achieved if velocity,position gain,and sampling period satisfy a set of inequalities related to the eigenvalues of the Laplacian matrix.Finally,the accuracy and validity of the theoretical results are proved by numerical simulations.展开更多
In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,non...In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,nonlinear functions,and exogenous disturbances under switching communication topologies.To solve this problem,a distributed fuzzy fault-tolerant controller is proposed for each follower by adaptive mechanisms to track the state of the leader.Furthermore,the fuzzy logic system is utilized to approximate the unknown nonlinear dynamics.An error estimator is introduced between the mismatched parameter matrix and the input matrix.Then,a selective adaptive law with relative state information is adopted and applied.When calculating the Lyapunov function’s derivative,the coupling terms related to consensus error and mismatched parameter uncertainties can be eliminated.Finally,a numerical simulation is given to validate the effectiveness of the proposed protocol.展开更多
This paper aims to examine the architecture design of a distributed antenna based Gbps wireless communication system using the high frequency band.In order to analyze the feasibility of the higher frequency band appli...This paper aims to examine the architecture design of a distributed antenna based Gbps wireless communication system using the high frequency band.In order to analyze the feasibility of the higher frequency band applications,the cumulative distribution of simulated user throughput in a cellular is investigated firstly.It shows that capacity improvement can be obtained using higher operating frequency band,especially in hotspot scenarios.Secondly,the architecture of the distributed antenna system(DAS) is introduced to overcome the disadvantages of weak coverage and rank deficient for the traditional multiple-input multiple-output(MIMO) systems using higher frequency bands in line-of-sight(LOS)environments.In addition,a software-defined-radio(SDR) based Gbps wireless transmission system with scalable hardware architecture is designed and implemented.Finally,a demo of outdoor DAS coverage for high data throughput application is given.Field trials show that 1 Gbps data rate and a large coverage in outdoor environments can be achieved over 6.05 GHz.It is proved that the Gbps DAS system at a higher frequency band can be a successful model for future wireless broadband coverage in hotspot scenarios.展开更多
Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and t...Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and the stability of structures when the intensive seismic excitation,the intensity of which is larger than 7,acts in train-bridge system.Firstly,the motion equations of a two-dimensional train-bridge system under the vertical random excitation of track irregularity and the vertical seismic acceleration are established,where the train subsystem is composed of 8 mutually independent vehicle elements with 48 degrees of freedom,while the single-span simple supported bridge subsystem is composed of 102D beam elements with 20 degrees of freedom on beam and 2 large mass degrees of freedom at the support.Secondly,Monte Carlo method and pseudo excitation method are adopted to analyze the statistical parameters of the system.The power spectrum density of random excitation is used to define a series of non-stationary pseudo excitation in pseudo excitation method and the trigonometric series of random vibration history samples in Monte Carlo method,respectively solved by precise integral method and Newmark-βmethod through the inter-system iterative procedure.Finally,the results are compared with the case under the weak seismic excitation,and show that the samples of vertical acceleration response of bridge and the offload factor of train obeys the normal distribution.In a high probability,the intensive earthquakes pose a greater threat to the safety and stability of bridges and trains than the weak ones.展开更多
The chattering characteristic of sliding mode control isanalyzed when it is applied in distributed control systems (DCSs).For a DCS with random time delay and packet dropout, a discreteswitching system model with ti...The chattering characteristic of sliding mode control isanalyzed when it is applied in distributed control systems (DCSs).For a DCS with random time delay and packet dropout, a discreteswitching system model with time varying sampling period isconstructed based on the time delay system method. The reachinglaw based sliding mode controller is applied in the proposedsystem. The exponential stability condition in the form of linearmatrix inequality is figured out based on the multi-Lyaponov functionmethod. Then, the chattering characteristic is analyzed for theswitching system, and a chattering region related with time varyingsampling period and external disturbance is proposed. Finally, numericalexamples are given to illustrate the validity of the analysisresult.展开更多
A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with ...A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with their states available for measurement. When the communication topology of the system is connected, an adaptive control algorithm with selfdelays and uncertainties is suggested to guarantee global full-state synchro-nization that the difference between the agent's positions and ve-locities asymptotically converges to zero. Moreover, the distributed sliding-mode law is given for chaotic systems with nonlinear inputs to compensate for the effects of nonlinearity. Finally, simulation results show the effectiveness of the proposed control algorithm.展开更多
A full distribution CNC system based on SERCOS bus is studied in accordance with the limitations of traditional PC-based motion card. The conventional PC-based motion control card is dispersed into several autonomous ...A full distribution CNC system based on SERCOS bus is studied in accordance with the limitations of traditional PC-based motion card. The conventional PC-based motion control card is dispersed into several autonomous intelligent servo-control units with the function of servo driver. The autonomous intelligent servocontrol units realize the loop control of position, velocity and current. Interpolation computation is completed in PC and the computational results are transferred to every autonomous intelligent servo-control unit by high speed SERCOS bus. Software or hardware synchronization technology is used to ensure all servomotors are successive and synchronously running. The communication and synchronization technology of SERCOS are also researched and the autonomous intelligent servo-control card is developed byself. Finally, the experiment of circle contour process on a prototype system proves the feasibility.展开更多
With the strong battlefield application environment of the next generation fighter,based on the design of distributed vehicle management system,a fault diagnosis and fault-tolerant control(FTC)method for wing surface ...With the strong battlefield application environment of the next generation fighter,based on the design of distributed vehicle management system,a fault diagnosis and fault-tolerant control(FTC)method for wing surface damage is proposed in this paper.Aiming at three kinds of wing damage modes,this paper proposes a diagnosis method based on the fault decision tree and forms a fault decision tree for wing damage from the aspects of sample database construction,feature parameter extraction,and fault decision tree construction.Based on the fault diagnosis results,the longitudinal control law based on dynamic inverse and the lateral-directional robust control laws based on linear quadratic regulator(LQR)are proposed.From the simulation examples,the fault diagnosis algorithm based on the decision tree can complete the judgment of three wing surface damage modes within 2 ms,and the FTC law can make the fighter quickly return to a stable flight state after a short transient of 1 s,which achieves the fault-tolerant goal.展开更多
基金supported by the National Natural Science Foundation of China(61673130).
文摘This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising dur-ing measurements, thereby enhancing the robustness and stabi-lity of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference sig-nals utilizing local information and communication with neigh-bors. Subsequently, a fixed-time sliding mode controller is intro-duced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve dis-tributed average tracking of reference signals, and rigorous ana-lytical methods are employed to substantiate the fixed-time sta-bility. Finally, numerical simulation results are provided to vali-date the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.
基金Project(50934002) supported by the National Natural Science Foundation of China
文摘In order to have a good understanding of the behavior of wet shotcrete as a support element interacting with the rock mass,mechanism of wet shotcrete interacting with rock in support systems was analyzed through theoretical,numerical study and analytical analysis.A new model of distribution of rock stress state after wet shotcrete was applied,which includes shotcrete layer,composite layer,strengthening layer,plastic layer and elastic layer,and a full illustration of the rock mass stress state was given after shotcrete interacting with rock mass.At the same time,numerical analysis with FLAC gives a stress distribution along the monitor line,respectively,at the sidewall and roof of the tunnel.The displacement obviously decreases with the depth of rock,the tangential stress for tunnel supported by shotcrete is lower than that without shotcrete,and radial stress for tunnel supported by shotcrete is higher than that without shotcrete.It has been demonstrated by AIRY'S stress function,which gives a reasonable solution.Finally,the application of wet shotcrete in Jinfeng Gold Mine shows that the displacement of tunnel decreases obviously in sidewall and roof.
基金This work was supported by the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah(G-363-135-1438).
文摘This paper addresses the cooperative control problem of multiple unmanned aerial vehicles(multi-UAV)systems.First,a new distributed consensus algorithm for second-order nonlinear multi-agent systems(MAS)is formulated under the leader-following approach.The algorithm provides smooth input signals to the agents’control channels,which avoids the chattering effect generated by the conventional sliding mode-based control protocols.Second,a new formation control scheme is developed by integrating smooth distributed consensus control protocols into the geometric pattern model to achieve three-dimensional formation tracking.The Lyapunov theory is used to prove the stability and convergence of both distributed consensus and formation controllers.The effectiveness of the proposed algorithms is demonstrated through simulation results.
基金Project(NCET050630) supported by Program for New Century Excellent Talents in University,China
文摘Grate process is an important step in grate-kiln pellet production.However,as a relatively closed system,the process on grate is inaccessible to direct detection,therefore,it is hard to control.As a result,mathematical models of temperature distribution,moisture distribution and oxidation degree distribution in pellet bed,with good universality,computation speed and calculation accuracy,are presented based on analysis of heat transfer and physical-chemical reactions during grate process.And real-time visualization of temperature,moisture and oxidation degree distribution in pellet bed during grate process is realized.Model validation is displayed,and the similarity of 91% is proved.The results can reveal real time status on grate,and provide a solid foundation for the subsequent study of artificial intelligence control system of pellet production.
基金Project(50775089)supported by the National Natural Science Foundation of ChinaProject(2007AA04Z190,2009AA043301)supported by the National High Technology Research and Development Program of ChinaProject(2005CB724100)supported by the National Basic Research Program of China
文摘The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.
基金Project(K117K06225)supported by JSPS KAKENHI,Japan
文摘Remote control process system with distributed time-delay has attracted much attention in different fields.In this paper,non-linear remote control of a single tank process system with wireless network is considered.To deal with the distributed time-delay in a large-scale plant,the time-delay compensation controller based on DCS devices is designed by using operator theory and particle filter.Distributed control system(DCS)device is developed to monitor and control from the central monitoring room to each process.The particle filter is a probabilistic method to estimate unobservable information from observable information.First,remote control system and experimental equipment are introduced.Second,control system based on an operator theory is designed.Then,process system with distributed time-delay using particle filter is carried out.Finally,the actual experiment is conducted by using the proposed time-delay compensation controller.When estimating with the proposed method,the result is close to the case in which the distributed time-delay does not exist.The effectiveness of the proposed control system is confirmed by experiment results.
基金Project(2003AA430200) supported by the National High-Tech Research and Development Program of China
文摘A retrofitted electro-hydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution(LUDV) system,taking boom hydraulic system as an example and ignoring the leakage of hydraulic cylinder and the mass of oil in it,a force equilibrium equation and a continuous equation of hydraulic cylinder were set up. Based on the flow equation of electro-hydraulic proportional valve,the pressure passing through the valve and the difference of pressure were tested and analyzed. The results show that the difference of pressure does not change with load,and it approximates to 2.0 MPa. And then,assume the flow across the valve is directly proportional to spool displacement and is not influenced by load,a simplified model of electro-hydraulic system was put forward. At the same time,by analyzing the structure and load-bearing of boom instrument,and combining moment equivalent equation of manipulator with rotating law,the estimation methods and equations for such parameters as equivalent mass and bearing force of hydraulic cylinder were set up. Finally,the step response of flow of boom cylinder was tested when the electro-hydraulic proportional valve was controlled by the step current. Based on the experiment curve,the flow gain coefficient of valve is identified as 2.825×10-4 m3/(s·A) and the model is verified.
基金Project(51975019)supported by the National Natural Science Foundation of ChinaProject(2019 ZX 04024001)supported by the National Science and Technology Major Project of ChinaProject(Z 201100006720008)supported by the Beijing Science and Technology Plan,China。
文摘Discrete manufacturing workshops are confronted with problems of processing diverse products and strict real time requirements for data service calculation and manufacturing equipment,which makes it difficult to provide real time feedback and compensation.In this study,a high-availability,high-performance,and high-concurrency digital twin reference model was constructed to satisfy a large number of manufacturing requirements.A multiterminal real-time interaction model and information aging classification rules for virtual and physical models were established.Moreover,a multiterminal virtual interaction model was proposed,and a generalized distributed computing service digital twinning system was developed.This digital twin system was considered a machine tool box processing line as an actual case.Consequently,a full closed-loop manufacturing process digital twin platform for physical request service,real-time response,and quality information feedback from iterations,which provides case guidance for subsequent factory digital twin systems,was realized.The proposed system can satisfy the requirements of multidevice big data computing services in modern manufacturing plants,as well as multiplatform,low-latency,and high-fidelity information visualization requirements for managers.Thus,this system is expected to play an important role in information factories.
基金Project supported by Changwon National University in 2010
文摘Flow distribution in branch piping system is affected by flow characteristics and different geometric variations. Most of the flow distribution studies are performed with one-dimensional analysis to yield overall information only. However, detailed analysis is required to find effects of design parameters on the flow distribution. For this aspect, three-dimensional turbulent flow analysis was performed to assess turbulence model performance and effects of upstream pressure and branch pipe geometry. Three different turbulence models of standard k-e model, realizable k-e model and standard k-co yield similar results, indicating small effects of turbulence models on flow characteristics analysis. Geometric variations include area ratio of main and branch pipes, branch pipe diameter, and connection shape of main and branch pipes. Among these parameters, area ratio and branch diameter and shape show strong effect on flow distribution due to high friction and minor loss. Uniform flow distribution is one of common requirements in the branch piping system and this can be achieved with rather high total loss design.
基金supported by the National Natural Science Foundation of China (70571083)the Research Fund for the Doctoral Program of Higher Education of China (20094307110013)
文摘A Bayesian sequential testing method is proposed to evaluate system reliability index with reliability growth during development.The method develops a reliability growth model of repairable systems for failure censored test,and figures out the approach to determine the prior distribution of the system failure rate by applying the reliability growth model to incorporate the multistage test data collected from system development.Furthermore,the procedure for the Bayesian sequential testing is derived for the failure rate of the exponential life system,which enables the decision to terminate or continue development test.Finally,a numerical example is given to illustrate the efficiency of the proposed model and procedure.
基金Project(2017YFC1405600)supported by the National Key R&D Program of ChinaProject(18JK05032)supported by the Scientific Research Project of Education Department of Shaanxi Province,China。
文摘Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified.
基金supported by the National Natural Science Foundation of China(6130400561174200)the Research Fund for the Doctoral Program of Higher Education of China(20102302110031)
文摘Based on the idea of backstepping design, distributedcoordinated tracking problems under directed topology are discussedfor multiple Euler-Lagrange (EL) systems. The dynamicleader case is considered. First, with the parameter-linearity property,a distributed coordinated adaptive control scheme is proposedfor EL systems in the presence of parametric uncertainties.Then, subject to nonlinear uncertainties and external disturbances,an improved adaptive control algorithm is developed by usingneural-network (NN) approximation of nonlinear functions. Bothproposed algorithms can make tracking errors for each followerultimately bounded. The closed-loop systems are investigated byusing the combination of graph theory, Lyapunov theory, and BarbalatLemma. Numerical examples and comparisons with othermethods are provided to show the effectiveness of the proposedcontrol strategies.
基金supported by the National Natural Science Foundation of China(61703427).
文摘In recent years,with the continuous development of multi-agent technology represented by unmanned aerial vehicle(UAV)swarm,consensus control has become a hot spot in academic research.In this paper,we put forward a discrete-time consensus protocol and obtain the necessary and sufficient conditions for the second-order consensus of the second-order multi-agent system with a fixed structure under the condition of no saturation input.The theoretical derivation verifies that the two eigenvalues of the Laplacian of the communication network matrix and the sampling period have an important effect on achieving consensus.Then we construct and verify sufficient conditions to achieve consensus under the condition of input saturation constraints.The results show that consensus can be achieved if velocity,position gain,and sampling period satisfy a set of inequalities related to the eigenvalues of the Laplacian matrix.Finally,the accuracy and validity of the theoretical results are proved by numerical simulations.
基金This work was supported by Tianjin Natural Science Foundation of China(20JCYBJC01060,20JCQNJC01450)the National Natural Science Foundation of China(61973175)Tianjin Postgraduate Scientific Research and Innovation Project(2020YJSZXB03,2020YJSZXB12).
文摘In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,nonlinear functions,and exogenous disturbances under switching communication topologies.To solve this problem,a distributed fuzzy fault-tolerant controller is proposed for each follower by adaptive mechanisms to track the state of the leader.Furthermore,the fuzzy logic system is utilized to approximate the unknown nonlinear dynamics.An error estimator is introduced between the mismatched parameter matrix and the input matrix.Then,a selective adaptive law with relative state information is adopted and applied.When calculating the Lyapunov function’s derivative,the coupling terms related to consensus error and mismatched parameter uncertainties can be eliminated.Finally,a numerical simulation is given to validate the effectiveness of the proposed protocol.
基金supported in part by the National Natural Science Foundation of China(No.61402044)863 plan program of China(No.2015AA01 A706)+2 种基金Science Foundation of Beijing Education Commission(No.KM201511232011)Science Fundation of Beijing Information Science & Technology University(No.5211524100)Beijing Nova Program(No.Z161100004916086)
文摘This paper aims to examine the architecture design of a distributed antenna based Gbps wireless communication system using the high frequency band.In order to analyze the feasibility of the higher frequency band applications,the cumulative distribution of simulated user throughput in a cellular is investigated firstly.It shows that capacity improvement can be obtained using higher operating frequency band,especially in hotspot scenarios.Secondly,the architecture of the distributed antenna system(DAS) is introduced to overcome the disadvantages of weak coverage and rank deficient for the traditional multiple-input multiple-output(MIMO) systems using higher frequency bands in line-of-sight(LOS)environments.In addition,a software-defined-radio(SDR) based Gbps wireless transmission system with scalable hardware architecture is designed and implemented.Finally,a demo of outdoor DAS coverage for high data throughput application is given.Field trials show that 1 Gbps data rate and a large coverage in outdoor environments can be achieved over 6.05 GHz.It is proved that the Gbps DAS system at a higher frequency band can be a successful model for future wireless broadband coverage in hotspot scenarios.
基金Project(52178101) supported by the National Natural Science Foundation of China。
文摘Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and the stability of structures when the intensive seismic excitation,the intensity of which is larger than 7,acts in train-bridge system.Firstly,the motion equations of a two-dimensional train-bridge system under the vertical random excitation of track irregularity and the vertical seismic acceleration are established,where the train subsystem is composed of 8 mutually independent vehicle elements with 48 degrees of freedom,while the single-span simple supported bridge subsystem is composed of 102D beam elements with 20 degrees of freedom on beam and 2 large mass degrees of freedom at the support.Secondly,Monte Carlo method and pseudo excitation method are adopted to analyze the statistical parameters of the system.The power spectrum density of random excitation is used to define a series of non-stationary pseudo excitation in pseudo excitation method and the trigonometric series of random vibration history samples in Monte Carlo method,respectively solved by precise integral method and Newmark-βmethod through the inter-system iterative procedure.Finally,the results are compared with the case under the weak seismic excitation,and show that the samples of vertical acceleration response of bridge and the offload factor of train obeys the normal distribution.In a high probability,the intensive earthquakes pose a greater threat to the safety and stability of bridges and trains than the weak ones.
基金supported by the National Natural Science Fundation of China(5147618751506221)+1 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2015JQ51792015JM5207)
文摘The chattering characteristic of sliding mode control isanalyzed when it is applied in distributed control systems (DCSs).For a DCS with random time delay and packet dropout, a discreteswitching system model with time varying sampling period isconstructed based on the time delay system method. The reachinglaw based sliding mode controller is applied in the proposedsystem. The exponential stability condition in the form of linearmatrix inequality is figured out based on the multi-Lyaponov functionmethod. Then, the chattering characteristic is analyzed for theswitching system, and a chattering region related with time varyingsampling period and external disturbance is proposed. Finally, numericalexamples are given to illustrate the validity of the analysisresult.
基金supported by the National Natural Sciences Foundation of China (60974146)
文摘A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with their states available for measurement. When the communication topology of the system is connected, an adaptive control algorithm with selfdelays and uncertainties is suggested to guarantee global full-state synchro-nization that the difference between the agent's positions and ve-locities asymptotically converges to zero. Moreover, the distributed sliding-mode law is given for chaotic systems with nonlinear inputs to compensate for the effects of nonlinearity. Finally, simulation results show the effectiveness of the proposed control algorithm.
文摘A full distribution CNC system based on SERCOS bus is studied in accordance with the limitations of traditional PC-based motion card. The conventional PC-based motion control card is dispersed into several autonomous intelligent servo-control units with the function of servo driver. The autonomous intelligent servocontrol units realize the loop control of position, velocity and current. Interpolation computation is completed in PC and the computational results are transferred to every autonomous intelligent servo-control unit by high speed SERCOS bus. Software or hardware synchronization technology is used to ensure all servomotors are successive and synchronously running. The communication and synchronization technology of SERCOS are also researched and the autonomous intelligent servo-control card is developed byself. Finally, the experiment of circle contour process on a prototype system proves the feasibility.
基金This work was supported by the Defense Industrial Technology Development Program(JCKY2016205C013).
文摘With the strong battlefield application environment of the next generation fighter,based on the design of distributed vehicle management system,a fault diagnosis and fault-tolerant control(FTC)method for wing surface damage is proposed in this paper.Aiming at three kinds of wing damage modes,this paper proposes a diagnosis method based on the fault decision tree and forms a fault decision tree for wing damage from the aspects of sample database construction,feature parameter extraction,and fault decision tree construction.Based on the fault diagnosis results,the longitudinal control law based on dynamic inverse and the lateral-directional robust control laws based on linear quadratic regulator(LQR)are proposed.From the simulation examples,the fault diagnosis algorithm based on the decision tree can complete the judgment of three wing surface damage modes within 2 ms,and the FTC law can make the fighter quickly return to a stable flight state after a short transient of 1 s,which achieves the fault-tolerant goal.