The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices...The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.展开更多
With the large-scale application of 5G technology in smart distribution networks,the operation effects of distribution networks are not clear.Herein,we propose a comprehensive evaluation model of a 5G+smart distributi...With the large-scale application of 5G technology in smart distribution networks,the operation effects of distribution networks are not clear.Herein,we propose a comprehensive evaluation model of a 5G+smart distribution network based on the combination weighting and cloud model of the improved Fuzzy Analytic Hierarchy-Entropy Weight Method(FAHP-EWM).First,we establish comprehensive evaluation indexes of a 5G+smart distribution network from five dimensions:reliable operation,economic operation,efficient interaction,technological intelligence,and green emission reduction.Second,by introducing the principle of variance minimization,we propose a combined weighting method based on the improved FAHP-EWM to calculate the comprehensive weight,so as to reduce the defects of subjective arbitrariness and promote objectivity.Finally,a comprehensive evaluation model of 5G+smart distribution network based on cloud model is proposed by considering the uncertainty of distribution network node information and equipment status information.The example analysis indicates that the overall operation of the 5G+smart distribution network project is decent,and the weight value calculated by the combined weighting method is more reasonable and accurate than that calculated by the single weighting method,which verifies the effectiveness and rationality of the proposed evaluation method.Moreover,the proposed evaluation method has a certain guiding role for the large-scale application of 5G communication technology in smart distribution networks.展开更多
The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and v...The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and voltage violations.To address these problems,we propose a coordinated planning method for flexible interconnections and energy storage systems(ESSs)to improve the accommodation capacity of DPVs.First,the power-transfer characteristics of flexible interconnection and ESSs are analyzed.The equipment costs of the voltage source converters(VSCs)and ESSs are also analyzed comprehensively,considering the differences in installation and maintenance costs for different installation locations.Second,a bilevel programming model is established to minimize the annual comprehensive cost and yearly total PV curtailment capacity.Within this framework,the upper-level model optimizes the installation locations and capacities of the VSCs and ESSs,whereas the lower-level model optimizes the operating power of the VSCs and ESSs.The proposed model is solved using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-II).The effectiveness of the proposed planning method is validated through an actual LVDN scenario,which demonstrates its advantages in enhancing PV accommodation capacity.In addition,the economic benefits of various planning schemes with different flexible interconnection topologies and different PV grid-connected forms are quantitatively analyzed,demonstrating the adaptability of the proposed coordinated planning method.展开更多
Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.Th...Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.The inherent laws reflected by the historical data of the distribution network are ignored,which affects the objectivity of the planning scheme.In this study,to improve the efficiency and accuracy of distribution network planning,the characteristics of distribution network data were extracted using a data-mining technique,and correlation knowledge of existing problems in the network was obtained.A data-mining model based on correlation rules was established.The inputs of the model were the electrical characteristic indices screened using the gray correlation method.The Apriori algorithm was used to extract correlation knowledge from the operational data of the distribution network and obtain strong correlation rules.Degree of promotion and chi-square tests were used to verify the rationality of the strong correlation rules of the model output.In this study,the correlation relationship between heavy load or overload problems of distribution network feeders in different regions and related characteristic indices was determined,and the confidence of the correlation rules was obtained.These results can provide an effective basis for the formulation of a distribution network planning scheme.展开更多
The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/D...The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/DC hybrid distribution network is put forward according to the demands of power grid, with advantages of accepting DG and DC loads, while clearing DC fault by blocking the clamping double sub-module(CDSM) of input stage. Then, this paper shows the typical structure of AC/DC distribution network that is hand in hand. Based on the new topology, this paper designs the control and modulation strategies of each stage, where the outer loop controller of input stage is emphasized for its twocontrol mode. At last, the rationality of new topology and the validity of control strategies are verified by the steady and dynamic state simulation. At the same time, the simulation results highlight the role of PET in energy regulation.展开更多
After suffering from a grid blackout, distributed energy resources(DERs), such as local renewable energy and controllable distributed generators and energy storage can be used to restore loads enhancing the system’s ...After suffering from a grid blackout, distributed energy resources(DERs), such as local renewable energy and controllable distributed generators and energy storage can be used to restore loads enhancing the system’s resilience. In this study, a multi-source coordinated load restoration strategy was investigated for a distribution network with soft open points(SOPs). Here, the flexible regulation ability of the SOPs is fully utilized to improve the load restoration level while mitigating voltage deviations. Owing to the uncertainty, a scenario-based stochastic optimization approach was employed,and the load restoration problem was formulated as a mixed-integer nonlinear programming model. A computationally efficient solution algorithm was developed for the model using convex relaxation and linearization methods. The algorithm is organized into a two-stage structure, in which the energy storage system is dispatched in the first stage by solving a relaxed convex problem. In the second stage, an integer programming problem is calculated to acquire the outputs of both SOPs and power resources. A numerical test was conducted on both IEEE 33-bus and IEEE 123-bus systems to validate the effectiveness of the proposed strategy.展开更多
In this paper,a fault location method for the petal-shaped distribution network(PSDN)with inverter-interfaced distributed generators(IIDGs)is proposed to shorten the time of manual inspection.In order to calculate the...In this paper,a fault location method for the petal-shaped distribution network(PSDN)with inverter-interfaced distributed generators(IIDGs)is proposed to shorten the time of manual inspection.In order to calculate the fault position,the closed-loop structure of the PSDN is skillfully exploited,and the common control strategies of IIDGs are considered.For asymmetrical faults,a fault line identification formula based on the negative-sequence current phase differences is presented,and a fault location formula only utilizing the negative-sequence current amplitudes is derived to calculated the fault position.For symmetrical faults,the positive-sequence current at both ends of lines and the current output from IIDGs are used to identify the fault line,and the positive-sequence current on multiple lines are used to pinpoint the fault position.In this method,corresponding current phasors are separated into amplitudes and phases to satisfy the limitation of communication level.The simulation results show that the error is generally less than 1%,and the accuracy of the proposed method is not affected by the fault type,fault position,fault resistance,load current,and the IIDG penetration.展开更多
This paper presents a new algorithm based on Hopfield neural network to find the optimal solution for an electric distribution network. This algorithm transforms the distribution power network-planning problem into a ...This paper presents a new algorithm based on Hopfield neural network to find the optimal solution for an electric distribution network. This algorithm transforms the distribution power network-planning problem into a directed graph-planning problem. The Hopfield neural network is designed to decide the in-degree of each node and is in combined application with an energy function. The new algorithm doesn’t need to code city streets and normalize data, so the program is easier to be realized. A case study applying the method to a district of 29 street proved that an optimal solution for the planning of such a power system could be obtained by only 26 iterations. The energy function and algorithm developed in this work have the following advantages over many existing algorithms for electric distribution network planning: fast convergence and unnecessary to code all possible lines.展开更多
This study proposes a method for analyzing the security distance of an Active Distribution Network(ADN)by incorporating the demand response of an Energy Hub(EH).Taking into account the impact of stochastic wind-solar ...This study proposes a method for analyzing the security distance of an Active Distribution Network(ADN)by incorporating the demand response of an Energy Hub(EH).Taking into account the impact of stochastic wind-solar power and flexible loads on the EH,an interactive power model was developed to represent the EH’s operation under these influences.Additionally,an ADN security distance model,integrating an EH with flexible loads,was constructed to evaluate the effect of flexible load variations on the ADN’s security distance.By considering scenarios such as air conditioning(AC)load reduction and base station(BS)load transfer,the security distances of phases A,B,and C increased by 17.1%,17.2%,and 17.7%,respectively.Furthermore,a multi-objective optimal power flow model was formulated and solved using the Forward-Backward Power Flow Algorithm,the NSGA-II multi-objective optimization algo-rithm,and the maximum satisfaction method.The simulation results of the IEEE33 node system example demonstrate that after opti-mization,the total energy cost for one day is reduced by 0.026%,and the total security distance limit of the ADN’s three phases is improved by 0.1 MVA.This method effectively enhances the security distance,facilitates BS load transfer and AC load reduction,and contributes to the energy-saving,economical,and safe operation of the power system.展开更多
Frequent extreme disasters have led to frequent large-scale power outages in recent years.To quickly restore power,it is necessary to understand the damage information of the distribution network accurately.However,th...Frequent extreme disasters have led to frequent large-scale power outages in recent years.To quickly restore power,it is necessary to understand the damage information of the distribution network accurately.However,the public network communication system is easily damaged after disasters,causing the operation center to lose control of the distribution network.In this paper,we considered using satellites to transmit the distribution network data and focus on the resource scheduling problem of the satellite emergency communication system for the distribution network.Specifically,this paper first formulates the satellite beam-pointing problem and the accesschannel joint resource allocation problem.Then,this paper proposes the Priority-based Beam-pointing and Access-Channel joint optimization algorithm(PBAC),which uses convex optimization theory to solve the satellite beam pointing problem,and adopts the block coordinate descent method,Lagrangian dual method,and a greedy algorithm to solve the access-channel joint resource allocation problem,thereby obtaining the optimal resource scheduling scheme for the satellite network.Finally,this paper conducts comparative experiments with existing methods to verify the effec-tiveness of the proposed methods.The results show that the total weighted transmitted data of the proposed algorithm is increased by about 19.29∼26.29%compared with other algorithms.展开更多
Typhoons can cause large-area blackouts or partial outages of distribution networks.We define a partial outage state in the distribution network as a gray state and propose a gray-start strategy and two-stage distribu...Typhoons can cause large-area blackouts or partial outages of distribution networks.We define a partial outage state in the distribution network as a gray state and propose a gray-start strategy and two-stage distribution network emergency recovery framework.A phase-space reconstruction and stacked integrated model for predicting wind and photovoltaic generation during typhoon disasters is proposed in the first stage.This provides guidance for second-stage post-disaster emergency recovery scheduling.The emergency recovery scheduling model is established in the second stage,and this model is supported by a thermal power-generating unit,mobile emergency generators,and distributed generators.Distributed generation includes wind power generation,photovoltaics,fuel cells,etc.Simultaneously,we con-sider the gray-start based on the pumped storage unit to be an important first step in the emergency recovery strategy.This model is val-idated on the improved IEEE 33 node system,which utilizes data from the 2022 super typhoon“Muifa”in Zhoushan,Zhejiang,China.Simulations indicate the superiority of a gray start with a pumped storage unit and the proposed emergency recovery strategy.展开更多
Many real-world systems can be modeled by weighted small-world networks with high clustering coefficients. Recent studies for rigorously analyzing the weighted spectral distribution(W SD) have focused on unweighted ...Many real-world systems can be modeled by weighted small-world networks with high clustering coefficients. Recent studies for rigorously analyzing the weighted spectral distribution(W SD) have focused on unweighted networks with low clustering coefficients. In this paper, we rigorously analyze the W SD in a deterministic weighted scale-free small-world network model and find that the W SD grows sublinearly with increasing network order(i.e., the number of nodes) and provides a sensitive discrimination for each input of this model. This study demonstrates that the scaling feature of the W SD exists in the weighted network model which has high and order-independent clustering coefficients and reasonable power-law exponents.展开更多
Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks ...Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.展开更多
In the trust management scheme of the distributed cognitive radio networks, the absence of the central control devices cause many problems such as a lack of standardized control for trust computation, and the absence ...In the trust management scheme of the distributed cognitive radio networks, the absence of the central control devices cause many problems such as a lack of standardized control for trust computation, and the absence of the decision makers in trust evaluation and collaborative decision making. A trust management mechanism based on the jury system for distributed cognitive radio networks is proposed in this paper. The "jury user" is designed to collaboratively examine the reputation of the cognitive user in the networks and to perform data fusion and spectrum allocation for distributed cognitive radio networks. Simulation analysis results show that the proposed scheme can ensure accuracy and fairness in trust evaluation and improve effectiveness and flexibility of spectrum allocation.展开更多
Disconnection in the distributed heterogeneous networked unmanned weapon systems is caused by multiple weapon units' failure. The technical routes were analyzed to achieve resilience in the disconnection situation. A...Disconnection in the distributed heterogeneous networked unmanned weapon systems is caused by multiple weapon units' failure. The technical routes were analyzed to achieve resilience in the disconnection situation. A heterogeneous distributed network model of networked unmanned weapon systems was established. And an approach of adding relay weapon units was proposed to a- chieve fault tolerance after weapon units' failure due to attack or energy exhaustion. An improved ge- netic algorithm was proposed to determine and optimize the position of the relay weapon units. Simulation results in the MATLAB show that the improved resilience-based genetic algorithm can restore the network connection maximally when the number of relay units is limited, the network can keep on working after failure, and the implementation cost is controlled in a reasonable range.展开更多
The distributed wireless quantum communication network (DWQCN) ha~ a distributed network topology and trans- mits information by quantum states. In this paper, we present the concept of the DWQCN and propose a syste...The distributed wireless quantum communication network (DWQCN) ha~ a distributed network topology and trans- mits information by quantum states. In this paper, we present the concept of the DWQCN and propose a system scheme to transfer quantum states in the DWQCN. The system scheme for transmitting information between any two nodes in the DWQCN includes a routing protocol and a scheme for transferring quantum states. The routing protocol is on-demand and the routing metric is selected based on the number of entangled particle pairs. After setting up a route, quantum tele- portation and entanglement swapping are used for transferring quantum states. Entanglement swapping is achieved along with the process of routing set up and the acknowledgment packet transmission. The measurement results of each entan- glement swapping are piggybacked with route reply packets or acknowledgment packets. After entanglement swapping, a direct quantum link between source and destination is set up and quantum states are transferred by quantum teleportation. Adopting this scheme, the measurement results of entanglement swapping do not need to be transmitted specially, which decreases the wireless transmission cost and transmission delay.展开更多
Secure authentication between user equipment and 5G core network is a critical issue for 5G system.However,the traditional authentication protocol 5 G-AKA and the centralized key database are at risk of several securi...Secure authentication between user equipment and 5G core network is a critical issue for 5G system.However,the traditional authentication protocol 5 G-AKA and the centralized key database are at risk of several security problems,e.g.key leakage,impersonation attack,MitM attack and single point of failure.In this paper,a blockchain based asymmetric authentication and key agreement protocol(BC-AKA)is proposed for distributed 5G core network.In particular,the key used in the authentication process is replaced from a symmetric key to an asymmetric key,and the database used to store keys in conventional 5G core network is replaced with a blockchain network.A proof of concept system for distributed 5G core network is built based on Ethereum and ECC-Secp256 k1,and the efficiency and effectiveness of the proposed scheme are verified by the experiment results.展开更多
Information-Centric Networking(ICN), an alternative architecture to the current Internet infrastructure, focuses on the distribution and retrieval of content by employing caches in a network to reduce network traffic....Information-Centric Networking(ICN), an alternative architecture to the current Internet infrastructure, focuses on the distribution and retrieval of content by employing caches in a network to reduce network traffic. The employment of caches may be accomplished using graph-based and content-based criteria such as the position of a node in a network and content popularity. The contribution of this paper lies on the characterization of content popularity for on-path in-network caching. To this end, four dynamic approaches for identifying content popularity are evaluated via simulations. Content popularity may be determined per chunk or per object, calculated by the number of requests for a content against the sum of requests or the maximum number of requests. Based on the results, chunk-based approaches provide 23% more accurate content popularity calculations than object-based approaches. In addition, approaches that are based on the comparison of a content against the maximum number of requests have been shown to be more accurate than the alternatives.展开更多
When applying Software-Defined Networks(SDN) to WANs,the SDN flexibility enables the cross-domain control to achieve a better control scalability.However,the control consistence is required by all the cross-domain ser...When applying Software-Defined Networks(SDN) to WANs,the SDN flexibility enables the cross-domain control to achieve a better control scalability.However,the control consistence is required by all the cross-domain services,to ensure the data plane configured in consensus for different domains.Such consistence process is complicated by potential failure and errors of WANs.In this paper,we propose a consistence layer to actively and passively snapshot the cross-domain control states,to reduce the complexities of service realizations.We implement the layer and evaluate performance in the PlanetLab testbed for the WAN emulation.The testbed conditions are extremely enlarged comparing to the real network.The results show its scalability,reliability and responsiveness in dealing with the control dynamics.In the normalized results,the active and passive snapshots are executed with the mean times of 1.873 s and 105 ms in135 controllers,indicating its readiness to be used in the real network.展开更多
Cache-enabled small cell networks have been regarded as a promising approach for network operators to cope with the explosive data traffic growth in future 5 G networks. However, the user association and resource allo...Cache-enabled small cell networks have been regarded as a promising approach for network operators to cope with the explosive data traffic growth in future 5 G networks. However, the user association and resource allocation mechanism has not been thoroughly studied under given content placement situation. In this paper, we formulate the joint optimization problem of user association and resource allocation as a mixed integer nonlinear programming(MINLP) problem aiming at deriving a balance between the total utility of data rates and the total data rates retrieved from caches. To solve this problem, we propose a distributed relaxing-rounding method. Simulation results demonstrate that the distributed relaxing-rounding method outperforms traditional max-SINR method and range-expansion method in terms of both total utility of data rates and total data rates retrieved from caches in practical scenarios. In addition, effects of storage and backhaul capacities on the performance are also studied.展开更多
基金supported by the Science and Technology Project of SGCC(kj2022-075).
文摘The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.
基金supported by the State Grid Corporation of China(KJ21-1-56).
文摘With the large-scale application of 5G technology in smart distribution networks,the operation effects of distribution networks are not clear.Herein,we propose a comprehensive evaluation model of a 5G+smart distribution network based on the combination weighting and cloud model of the improved Fuzzy Analytic Hierarchy-Entropy Weight Method(FAHP-EWM).First,we establish comprehensive evaluation indexes of a 5G+smart distribution network from five dimensions:reliable operation,economic operation,efficient interaction,technological intelligence,and green emission reduction.Second,by introducing the principle of variance minimization,we propose a combined weighting method based on the improved FAHP-EWM to calculate the comprehensive weight,so as to reduce the defects of subjective arbitrariness and promote objectivity.Finally,a comprehensive evaluation model of 5G+smart distribution network based on cloud model is proposed by considering the uncertainty of distribution network node information and equipment status information.The example analysis indicates that the overall operation of the 5G+smart distribution network project is decent,and the weight value calculated by the combined weighting method is more reasonable and accurate than that calculated by the single weighting method,which verifies the effectiveness and rationality of the proposed evaluation method.Moreover,the proposed evaluation method has a certain guiding role for the large-scale application of 5G communication technology in smart distribution networks.
基金supported by the Science and Technology Support Program of Guizhou Province([2022]General 012)the Key Science and Technology Project of China Southern Power Grid Corporation(GZKJXM20220043)。
文摘The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and voltage violations.To address these problems,we propose a coordinated planning method for flexible interconnections and energy storage systems(ESSs)to improve the accommodation capacity of DPVs.First,the power-transfer characteristics of flexible interconnection and ESSs are analyzed.The equipment costs of the voltage source converters(VSCs)and ESSs are also analyzed comprehensively,considering the differences in installation and maintenance costs for different installation locations.Second,a bilevel programming model is established to minimize the annual comprehensive cost and yearly total PV curtailment capacity.Within this framework,the upper-level model optimizes the installation locations and capacities of the VSCs and ESSs,whereas the lower-level model optimizes the operating power of the VSCs and ESSs.The proposed model is solved using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-II).The effectiveness of the proposed planning method is validated through an actual LVDN scenario,which demonstrates its advantages in enhancing PV accommodation capacity.In addition,the economic benefits of various planning schemes with different flexible interconnection topologies and different PV grid-connected forms are quantitatively analyzed,demonstrating the adaptability of the proposed coordinated planning method.
基金supported by the Science and Technology Project of China Southern Power Grid(GZHKJXM20210043-080041KK52210002).
文摘Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.The inherent laws reflected by the historical data of the distribution network are ignored,which affects the objectivity of the planning scheme.In this study,to improve the efficiency and accuracy of distribution network planning,the characteristics of distribution network data were extracted using a data-mining technique,and correlation knowledge of existing problems in the network was obtained.A data-mining model based on correlation rules was established.The inputs of the model were the electrical characteristic indices screened using the gray correlation method.The Apriori algorithm was used to extract correlation knowledge from the operational data of the distribution network and obtain strong correlation rules.Degree of promotion and chi-square tests were used to verify the rationality of the strong correlation rules of the model output.In this study,the correlation relationship between heavy load or overload problems of distribution network feeders in different regions and related characteristic indices was determined,and the confidence of the correlation rules was obtained.These results can provide an effective basis for the formulation of a distribution network planning scheme.
基金supported by National Key Research and Development Program of China (2016YFB0900500,2017YFB0903100)the State Grid Science and Technology Project (SGRI-DL-F1-51-011)
文摘The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/DC hybrid distribution network is put forward according to the demands of power grid, with advantages of accepting DG and DC loads, while clearing DC fault by blocking the clamping double sub-module(CDSM) of input stage. Then, this paper shows the typical structure of AC/DC distribution network that is hand in hand. Based on the new topology, this paper designs the control and modulation strategies of each stage, where the outer loop controller of input stage is emphasized for its twocontrol mode. At last, the rationality of new topology and the validity of control strategies are verified by the steady and dynamic state simulation. At the same time, the simulation results highlight the role of PET in energy regulation.
基金supported by the State Grid Tianjin Electric Power Company Science and Technology Project (Grant No. KJ22-1-45)。
文摘After suffering from a grid blackout, distributed energy resources(DERs), such as local renewable energy and controllable distributed generators and energy storage can be used to restore loads enhancing the system’s resilience. In this study, a multi-source coordinated load restoration strategy was investigated for a distribution network with soft open points(SOPs). Here, the flexible regulation ability of the SOPs is fully utilized to improve the load restoration level while mitigating voltage deviations. Owing to the uncertainty, a scenario-based stochastic optimization approach was employed,and the load restoration problem was formulated as a mixed-integer nonlinear programming model. A computationally efficient solution algorithm was developed for the model using convex relaxation and linearization methods. The algorithm is organized into a two-stage structure, in which the energy storage system is dispatched in the first stage by solving a relaxed convex problem. In the second stage, an integer programming problem is calculated to acquire the outputs of both SOPs and power resources. A numerical test was conducted on both IEEE 33-bus and IEEE 123-bus systems to validate the effectiveness of the proposed strategy.
基金supported by State Grid Science and Technology Project:Research on Key Protection Technologies for New-type Urban Distribution Network with Controllable Sources and Loads(5100-201913019A-0-0-00).
文摘In this paper,a fault location method for the petal-shaped distribution network(PSDN)with inverter-interfaced distributed generators(IIDGs)is proposed to shorten the time of manual inspection.In order to calculate the fault position,the closed-loop structure of the PSDN is skillfully exploited,and the common control strategies of IIDGs are considered.For asymmetrical faults,a fault line identification formula based on the negative-sequence current phase differences is presented,and a fault location formula only utilizing the negative-sequence current amplitudes is derived to calculated the fault position.For symmetrical faults,the positive-sequence current at both ends of lines and the current output from IIDGs are used to identify the fault line,and the positive-sequence current on multiple lines are used to pinpoint the fault position.In this method,corresponding current phasors are separated into amplitudes and phases to satisfy the limitation of communication level.The simulation results show that the error is generally less than 1%,and the accuracy of the proposed method is not affected by the fault type,fault position,fault resistance,load current,and the IIDG penetration.
文摘This paper presents a new algorithm based on Hopfield neural network to find the optimal solution for an electric distribution network. This algorithm transforms the distribution power network-planning problem into a directed graph-planning problem. The Hopfield neural network is designed to decide the in-degree of each node and is in combined application with an energy function. The new algorithm doesn’t need to code city streets and normalize data, so the program is easier to be realized. A case study applying the method to a district of 29 street proved that an optimal solution for the planning of such a power system could be obtained by only 26 iterations. The energy function and algorithm developed in this work have the following advantages over many existing algorithms for electric distribution network planning: fast convergence and unnecessary to code all possible lines.
基金supported in part by the National Nat-ural Science Foundation of China(No.51977012,No.52307080).
文摘This study proposes a method for analyzing the security distance of an Active Distribution Network(ADN)by incorporating the demand response of an Energy Hub(EH).Taking into account the impact of stochastic wind-solar power and flexible loads on the EH,an interactive power model was developed to represent the EH’s operation under these influences.Additionally,an ADN security distance model,integrating an EH with flexible loads,was constructed to evaluate the effect of flexible load variations on the ADN’s security distance.By considering scenarios such as air conditioning(AC)load reduction and base station(BS)load transfer,the security distances of phases A,B,and C increased by 17.1%,17.2%,and 17.7%,respectively.Furthermore,a multi-objective optimal power flow model was formulated and solved using the Forward-Backward Power Flow Algorithm,the NSGA-II multi-objective optimization algo-rithm,and the maximum satisfaction method.The simulation results of the IEEE33 node system example demonstrate that after opti-mization,the total energy cost for one day is reduced by 0.026%,and the total security distance limit of the ADN’s three phases is improved by 0.1 MVA.This method effectively enhances the security distance,facilitates BS load transfer and AC load reduction,and contributes to the energy-saving,economical,and safe operation of the power system.
基金supported by the Science and Technology Project of the State Grid Corporation of China(5400-202255158A-1-1-ZN).
文摘Frequent extreme disasters have led to frequent large-scale power outages in recent years.To quickly restore power,it is necessary to understand the damage information of the distribution network accurately.However,the public network communication system is easily damaged after disasters,causing the operation center to lose control of the distribution network.In this paper,we considered using satellites to transmit the distribution network data and focus on the resource scheduling problem of the satellite emergency communication system for the distribution network.Specifically,this paper first formulates the satellite beam-pointing problem and the accesschannel joint resource allocation problem.Then,this paper proposes the Priority-based Beam-pointing and Access-Channel joint optimization algorithm(PBAC),which uses convex optimization theory to solve the satellite beam pointing problem,and adopts the block coordinate descent method,Lagrangian dual method,and a greedy algorithm to solve the access-channel joint resource allocation problem,thereby obtaining the optimal resource scheduling scheme for the satellite network.Finally,this paper conducts comparative experiments with existing methods to verify the effec-tiveness of the proposed methods.The results show that the total weighted transmitted data of the proposed algorithm is increased by about 19.29∼26.29%compared with other algorithms.
基金supported in part by the National Nat-ural Science Foundation of China(52177110)Key Pro-gram of the National Natural Science Foundation of China(U22B20106,U2142206)+2 种基金Shenzhen Science and Technology Program(JCYJ20210324131409026)the Science and Technology Project of the State Grid Corpo-ration of China(5200-202319382A-2-3-XG)State Grid Zhejiang Elctric Power Co.,Ltd.Science and Tech-nology Project(B311DS24001A).
文摘Typhoons can cause large-area blackouts or partial outages of distribution networks.We define a partial outage state in the distribution network as a gray state and propose a gray-start strategy and two-stage distribution network emergency recovery framework.A phase-space reconstruction and stacked integrated model for predicting wind and photovoltaic generation during typhoon disasters is proposed in the first stage.This provides guidance for second-stage post-disaster emergency recovery scheduling.The emergency recovery scheduling model is established in the second stage,and this model is supported by a thermal power-generating unit,mobile emergency generators,and distributed generators.Distributed generation includes wind power generation,photovoltaics,fuel cells,etc.Simultaneously,we con-sider the gray-start based on the pumped storage unit to be an important first step in the emergency recovery strategy.This model is val-idated on the improved IEEE 33 node system,which utilizes data from the 2022 super typhoon“Muifa”in Zhoushan,Zhejiang,China.Simulations indicate the superiority of a gray start with a pumped storage unit and the proposed emergency recovery strategy.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61402485,61573262,and 61303061)
文摘Many real-world systems can be modeled by weighted small-world networks with high clustering coefficients. Recent studies for rigorously analyzing the weighted spectral distribution(W SD) have focused on unweighted networks with low clustering coefficients. In this paper, we rigorously analyze the W SD in a deterministic weighted scale-free small-world network model and find that the W SD grows sublinearly with increasing network order(i.e., the number of nodes) and provides a sensitive discrimination for each input of this model. This study demonstrates that the scaling feature of the W SD exists in the weighted network model which has high and order-independent clustering coefficients and reasonable power-law exponents.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 60921063) and the National High Technology Research and Development Program of China (Grant No. 2013AA013601).
文摘Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.
基金supported by the National Natural Science Foundation of China under Grant No. 61172068
文摘In the trust management scheme of the distributed cognitive radio networks, the absence of the central control devices cause many problems such as a lack of standardized control for trust computation, and the absence of the decision makers in trust evaluation and collaborative decision making. A trust management mechanism based on the jury system for distributed cognitive radio networks is proposed in this paper. The "jury user" is designed to collaboratively examine the reputation of the cognitive user in the networks and to perform data fusion and spectrum allocation for distributed cognitive radio networks. Simulation analysis results show that the proposed scheme can ensure accuracy and fairness in trust evaluation and improve effectiveness and flexibility of spectrum allocation.
基金Supported by the Aviation Science Foundation of China(2013ZC72006)
文摘Disconnection in the distributed heterogeneous networked unmanned weapon systems is caused by multiple weapon units' failure. The technical routes were analyzed to achieve resilience in the disconnection situation. A heterogeneous distributed network model of networked unmanned weapon systems was established. And an approach of adding relay weapon units was proposed to a- chieve fault tolerance after weapon units' failure due to attack or energy exhaustion. An improved ge- netic algorithm was proposed to determine and optimize the position of the relay weapon units. Simulation results in the MATLAB show that the improved resilience-based genetic algorithm can restore the network connection maximally when the number of relay units is limited, the network can keep on working after failure, and the implementation cost is controlled in a reasonable range.
基金supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 60921063)the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 60902010)
文摘The distributed wireless quantum communication network (DWQCN) ha~ a distributed network topology and trans- mits information by quantum states. In this paper, we present the concept of the DWQCN and propose a system scheme to transfer quantum states in the DWQCN. The system scheme for transmitting information between any two nodes in the DWQCN includes a routing protocol and a scheme for transferring quantum states. The routing protocol is on-demand and the routing metric is selected based on the number of entangled particle pairs. After setting up a route, quantum tele- portation and entanglement swapping are used for transferring quantum states. Entanglement swapping is achieved along with the process of routing set up and the acknowledgment packet transmission. The measurement results of each entan- glement swapping are piggybacked with route reply packets or acknowledgment packets. After entanglement swapping, a direct quantum link between source and destination is set up and quantum states are transferred by quantum teleportation. Adopting this scheme, the measurement results of entanglement swapping do not need to be transmitted specially, which decreases the wireless transmission cost and transmission delay.
基金supported by National Key Research and Development Program of China under Grant 2021YFE0205300Tianjin Natural Science Foundation(19JCYBJC15700)。
文摘Secure authentication between user equipment and 5G core network is a critical issue for 5G system.However,the traditional authentication protocol 5 G-AKA and the centralized key database are at risk of several security problems,e.g.key leakage,impersonation attack,MitM attack and single point of failure.In this paper,a blockchain based asymmetric authentication and key agreement protocol(BC-AKA)is proposed for distributed 5G core network.In particular,the key used in the authentication process is replaced from a symmetric key to an asymmetric key,and the database used to store keys in conventional 5G core network is replaced with a blockchain network.A proof of concept system for distributed 5G core network is built based on Ethereum and ECC-Secp256 k1,and the efficiency and effectiveness of the proposed scheme are verified by the experiment results.
基金funded by the Higher Education Authority (HEA)co-funded under the European Regional Development Fund (ERDF)
文摘Information-Centric Networking(ICN), an alternative architecture to the current Internet infrastructure, focuses on the distribution and retrieval of content by employing caches in a network to reduce network traffic. The employment of caches may be accomplished using graph-based and content-based criteria such as the position of a node in a network and content popularity. The contribution of this paper lies on the characterization of content popularity for on-path in-network caching. To this end, four dynamic approaches for identifying content popularity are evaluated via simulations. Content popularity may be determined per chunk or per object, calculated by the number of requests for a content against the sum of requests or the maximum number of requests. Based on the results, chunk-based approaches provide 23% more accurate content popularity calculations than object-based approaches. In addition, approaches that are based on the comparison of a content against the maximum number of requests have been shown to be more accurate than the alternatives.
基金supported by the National Basic Research Program of China (2012CB315903)the Program for Key Science and Technology Innovation Team of Zhejiang Province(2011R50010,2013TD20)+3 种基金the National High Technology Research Program of China(2015AA016103)the National Natural Science Foundation of China(61379118)the Research Fund of ZTE CorporationJiaxing Science and Technology Project (No.2014AY21021)
文摘When applying Software-Defined Networks(SDN) to WANs,the SDN flexibility enables the cross-domain control to achieve a better control scalability.However,the control consistence is required by all the cross-domain services,to ensure the data plane configured in consensus for different domains.Such consistence process is complicated by potential failure and errors of WANs.In this paper,we propose a consistence layer to actively and passively snapshot the cross-domain control states,to reduce the complexities of service realizations.We implement the layer and evaluate performance in the PlanetLab testbed for the WAN emulation.The testbed conditions are extremely enlarged comparing to the real network.The results show its scalability,reliability and responsiveness in dealing with the control dynamics.In the normalized results,the active and passive snapshots are executed with the mean times of 1.873 s and 105 ms in135 controllers,indicating its readiness to be used in the real network.
基金supported by National Natural Science Foundation of China under Grants No. 61371087 and 61531013The Research Fund of Ministry of Education-China Mobile (MCM20150102)
文摘Cache-enabled small cell networks have been regarded as a promising approach for network operators to cope with the explosive data traffic growth in future 5 G networks. However, the user association and resource allocation mechanism has not been thoroughly studied under given content placement situation. In this paper, we formulate the joint optimization problem of user association and resource allocation as a mixed integer nonlinear programming(MINLP) problem aiming at deriving a balance between the total utility of data rates and the total data rates retrieved from caches. To solve this problem, we propose a distributed relaxing-rounding method. Simulation results demonstrate that the distributed relaxing-rounding method outperforms traditional max-SINR method and range-expansion method in terms of both total utility of data rates and total data rates retrieved from caches in practical scenarios. In addition, effects of storage and backhaul capacities on the performance are also studied.