In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line select...In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line selection always existed in existing methods. According to the characteristics that transient current was different between the fault feeder and other faultless feeders, wavelet transformation was performed on data of the transient current within a power frequency cycle after the fault occurred. Based on different fault angles, wavelet energy in corresponding frequency band was chosen to compare. The result was that wavelet energy in fault feeder was the largest of all, and it was larger than sum of those in other faultless feeders, when the bus broke down, the disparity between each wavelet energy was not significant. Fault line could be selected out by the criterion above. The results of MATLAB/simulink simulation experiment indicated that this method had anti-interference capacity and was feasible.展开更多
当逆变型分布式电源(distributed generation,DG)以T接的方式接入高压配电网时,仅依靠提高电流纵联差动保护的整定值可能导致保护拒动。首先分析了逆变型DG的接入对电流纵联差动保护带来的影响。然后,利用线路母线电压互感器的信息,提...当逆变型分布式电源(distributed generation,DG)以T接的方式接入高压配电网时,仅依靠提高电流纵联差动保护的整定值可能导致保护拒动。首先分析了逆变型DG的接入对电流纵联差动保护带来的影响。然后,利用线路母线电压互感器的信息,提出了以线路两端正序补偿电压的差值作为辅助判据的解决方案,并利用正序补偿电压和正序差动电流的相位关系消除动作死区。该方案简单易行,能够实现全线速动,并且不受DG容量、过渡电阻及两侧系统电势相角差等因素的影响。最后,基于PSCAD仿真平台搭建了含逆变型DG的110 k V高压配电网模型,对传统的电流纵差保护及改进的纵差保护进行了对比,验证了改进后保护方案的可靠性和有效性。展开更多
文摘In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line selection always existed in existing methods. According to the characteristics that transient current was different between the fault feeder and other faultless feeders, wavelet transformation was performed on data of the transient current within a power frequency cycle after the fault occurred. Based on different fault angles, wavelet energy in corresponding frequency band was chosen to compare. The result was that wavelet energy in fault feeder was the largest of all, and it was larger than sum of those in other faultless feeders, when the bus broke down, the disparity between each wavelet energy was not significant. Fault line could be selected out by the criterion above. The results of MATLAB/simulink simulation experiment indicated that this method had anti-interference capacity and was feasible.
文摘当逆变型分布式电源(distributed generation,DG)以T接的方式接入高压配电网时,仅依靠提高电流纵联差动保护的整定值可能导致保护拒动。首先分析了逆变型DG的接入对电流纵联差动保护带来的影响。然后,利用线路母线电压互感器的信息,提出了以线路两端正序补偿电压的差值作为辅助判据的解决方案,并利用正序补偿电压和正序差动电流的相位关系消除动作死区。该方案简单易行,能够实现全线速动,并且不受DG容量、过渡电阻及两侧系统电势相角差等因素的影响。最后,基于PSCAD仿真平台搭建了含逆变型DG的110 k V高压配电网模型,对传统的电流纵差保护及改进的纵差保护进行了对比,验证了改进后保护方案的可靠性和有效性。