期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于分布式纳什Q学习的多传感器协同目标跟踪
被引量:
1
1
作者
蔡佳
黄长强
+1 位作者
高翔
胡杰
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2012年第A01期60-65,共6页
针对传统目标跟踪算法过分依赖环境模型的问题,提出了一种基于分布式纳什Q学习的多传感器协同目标跟踪算法.分析了强化学习与分布式纳什Q学习算法的原理;描述了多传感器的协同跟踪态势,建立了离散系统的非线性模型,给出了传统的扩展卡...
针对传统目标跟踪算法过分依赖环境模型的问题,提出了一种基于分布式纳什Q学习的多传感器协同目标跟踪算法.分析了强化学习与分布式纳什Q学习算法的原理;描述了多传感器的协同跟踪态势,建立了离散系统的非线性模型,给出了传统的扩展卡尔曼滤波解决方法;定义了对分布式纳什Q学习性能影响至关重要的传感器行为和奖惩函数,奖惩函数通过计算预测误差方差阵的迹得到;采用基于贝叶斯推理的概率统计方法解决了Q函数的更新问题.纯方位量测信息的被动跟踪仿真结果表明,相比于传统滤波算法,该算法增强了传感器对环境变化的适应性,实现了对目标的有效跟踪,提高了跟踪精度.
展开更多
关键词
目标跟踪
非线性滤波
强化学习
纳什Q学习
分布式控制
多传感器协同
算法
在线阅读
下载PDF
职称材料
题名
基于分布式纳什Q学习的多传感器协同目标跟踪
被引量:
1
1
作者
蔡佳
黄长强
高翔
胡杰
机构
空军工程大学航空航天工程学院
解放军
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2012年第A01期60-65,共6页
基金
航空科学基金资助项目(20105196016)
文摘
针对传统目标跟踪算法过分依赖环境模型的问题,提出了一种基于分布式纳什Q学习的多传感器协同目标跟踪算法.分析了强化学习与分布式纳什Q学习算法的原理;描述了多传感器的协同跟踪态势,建立了离散系统的非线性模型,给出了传统的扩展卡尔曼滤波解决方法;定义了对分布式纳什Q学习性能影响至关重要的传感器行为和奖惩函数,奖惩函数通过计算预测误差方差阵的迹得到;采用基于贝叶斯推理的概率统计方法解决了Q函数的更新问题.纯方位量测信息的被动跟踪仿真结果表明,相比于传统滤波算法,该算法增强了传感器对环境变化的适应性,实现了对目标的有效跟踪,提高了跟踪精度.
关键词
目标跟踪
非线性滤波
强化学习
纳什Q学习
分布式控制
多传感器协同
算法
Keywords
target tracking
nonlinear filtering
reinforcement learning
Nash Q-learning
distributedcontrol
multi-sensor cooperation
algorithm
分类号
TP274 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于分布式纳什Q学习的多传感器协同目标跟踪
蔡佳
黄长强
高翔
胡杰
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2012
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部