Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process...Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified.展开更多
A DMVOCC-MVDA (distributed multiversion optimistic concurrency control with multiversion dynamic adjustment) protocol was presented to process mobile distributed real-time transaction in mobile broadcast environment...A DMVOCC-MVDA (distributed multiversion optimistic concurrency control with multiversion dynamic adjustment) protocol was presented to process mobile distributed real-time transaction in mobile broadcast environments. At the mobile hosts, all transactions perform local pre-validation. The local pre-validation process is carried out against the committed transactions at the server in the last broadcast cycle. Transactions that survive in local pre-validation must be submitted to the server for local final validation. The new protocol eliminates conflicts between mobile read-only and mobile update transactions, and resolves data conflicts flexibly by using multiversion dynamic adjustment of serialization order to avoid unnecessary restarts of transactions. Mobile read-only transactions can be committed with no-blocking, and respond time of mobile read-only transactions is greatly shortened. The tolerance of mobile transactions of disconnections from the broadcast channel is increased. In global validation mobile distributed transactions have to do check to ensure distributed serializability in all participants. The simulation results show that the new concurrency control protocol proposed offers better performance than other protocols in terms of miss rate, restart rate, commit rate. Under high work load (think time is ls) the miss rate of DMVOCC-MVDA is only 14.6%, is significantly lower than that of other protocols. The restart rate of DMVOCC-MVDA is only 32.3%, showing that DMVOCC-MVDA can effectively reduce the restart rate of mobile transactions. And the commit rate of DMVOCC-MVDA is up to 61.2%, which is obviously higher than that of other protocols.展开更多
Due to the increasing number of cloud applications,the amount of data in the cloud shows signs of growing faster than ever before.The nature of cloud computing requires cloud data processing systems that can handle hu...Due to the increasing number of cloud applications,the amount of data in the cloud shows signs of growing faster than ever before.The nature of cloud computing requires cloud data processing systems that can handle huge volumes of data and have high performance.However,most cloud storage systems currently adopt a hash-like approach to retrieving data that only supports simple keyword-based enquiries,but lacks various forms of information search.Therefore,a scalable and efficient indexing scheme is clearly required.In this paper,we present a skip list-based cloud index,called SLC-index,which is a novel,scalable skip list-based indexing for cloud data processing.The SLC-index offers a two-layered architecture for extending indexing scope and facilitating better throughput.Dynamic load-balancing for the SLC-index is achieved by online migration of index nodes between servers.Furthermore,it is a flexible system due to its dynamic addition and removal of servers.The SLC-index is efficient for both point and range queries.Experimental results show the efficiency of the SLC-index and its usefulness as an alternative approach for cloud-suitable data structures.展开更多
针对数据量剧增的配电物联网中存在的带宽利用率低和业务数据服务质量(quality of service,QoS)难以满足通信需求等问题,提出一种多优先级排队论的带宽分配方法。首先,对感知终端到边缘物联网关的业务数据传输过程进行改进,改进后的传...针对数据量剧增的配电物联网中存在的带宽利用率低和业务数据服务质量(quality of service,QoS)难以满足通信需求等问题,提出一种多优先级排队论的带宽分配方法。首先,对感知终端到边缘物联网关的业务数据传输过程进行改进,改进后的传输过程可根据不同业务数据对QoS的不同要求进行数据优先级的划分,对不同优先级数据设置不同的服务机制;然后,对业务数据传输中的马尔科夫过程进行分析,基于改进后的数据传输过程建立以带宽利用率为目标,丢包率和延时时间为约束的多优先级排队论带宽分配模型;并将所提出的带宽分配方法与传统方法进行对比。结果表明:QoS指标有所改善,而且带宽利用率比传统不分优先级带宽分配方法高9.73%,比弹性系数法高31.17%。最后,探究多优先级排队论带宽分配方法的动态性能,结果表明适当地提高带宽可以改善QoS指标,但要注意带宽增大时所带来的带宽利用率减小问题。合理的带宽分配可以避免资源的浪费。展开更多
基金Project(2017YFC1405600)supported by the National Key R&D Program of ChinaProject(18JK05032)supported by the Scientific Research Project of Education Department of Shaanxi Province,China。
文摘Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified.
基金Project(20030533011)supported by the National Research Foundation for the Doctoral Program of Higher Education of China
文摘A DMVOCC-MVDA (distributed multiversion optimistic concurrency control with multiversion dynamic adjustment) protocol was presented to process mobile distributed real-time transaction in mobile broadcast environments. At the mobile hosts, all transactions perform local pre-validation. The local pre-validation process is carried out against the committed transactions at the server in the last broadcast cycle. Transactions that survive in local pre-validation must be submitted to the server for local final validation. The new protocol eliminates conflicts between mobile read-only and mobile update transactions, and resolves data conflicts flexibly by using multiversion dynamic adjustment of serialization order to avoid unnecessary restarts of transactions. Mobile read-only transactions can be committed with no-blocking, and respond time of mobile read-only transactions is greatly shortened. The tolerance of mobile transactions of disconnections from the broadcast channel is increased. In global validation mobile distributed transactions have to do check to ensure distributed serializability in all participants. The simulation results show that the new concurrency control protocol proposed offers better performance than other protocols in terms of miss rate, restart rate, commit rate. Under high work load (think time is ls) the miss rate of DMVOCC-MVDA is only 14.6%, is significantly lower than that of other protocols. The restart rate of DMVOCC-MVDA is only 32.3%, showing that DMVOCC-MVDA can effectively reduce the restart rate of mobile transactions. And the commit rate of DMVOCC-MVDA is up to 61.2%, which is obviously higher than that of other protocols.
基金Projects(61363021,61540061,61663047)supported by the National Natural Science Foundation of ChinaProject(2017SE206)supported by the Open Foundation of Key Laboratory in Software Engineering of Yunnan Province,China
文摘Due to the increasing number of cloud applications,the amount of data in the cloud shows signs of growing faster than ever before.The nature of cloud computing requires cloud data processing systems that can handle huge volumes of data and have high performance.However,most cloud storage systems currently adopt a hash-like approach to retrieving data that only supports simple keyword-based enquiries,but lacks various forms of information search.Therefore,a scalable and efficient indexing scheme is clearly required.In this paper,we present a skip list-based cloud index,called SLC-index,which is a novel,scalable skip list-based indexing for cloud data processing.The SLC-index offers a two-layered architecture for extending indexing scope and facilitating better throughput.Dynamic load-balancing for the SLC-index is achieved by online migration of index nodes between servers.Furthermore,it is a flexible system due to its dynamic addition and removal of servers.The SLC-index is efficient for both point and range queries.Experimental results show the efficiency of the SLC-index and its usefulness as an alternative approach for cloud-suitable data structures.
文摘针对数据量剧增的配电物联网中存在的带宽利用率低和业务数据服务质量(quality of service,QoS)难以满足通信需求等问题,提出一种多优先级排队论的带宽分配方法。首先,对感知终端到边缘物联网关的业务数据传输过程进行改进,改进后的传输过程可根据不同业务数据对QoS的不同要求进行数据优先级的划分,对不同优先级数据设置不同的服务机制;然后,对业务数据传输中的马尔科夫过程进行分析,基于改进后的数据传输过程建立以带宽利用率为目标,丢包率和延时时间为约束的多优先级排队论带宽分配模型;并将所提出的带宽分配方法与传统方法进行对比。结果表明:QoS指标有所改善,而且带宽利用率比传统不分优先级带宽分配方法高9.73%,比弹性系数法高31.17%。最后,探究多优先级排队论带宽分配方法的动态性能,结果表明适当地提高带宽可以改善QoS指标,但要注意带宽增大时所带来的带宽利用率减小问题。合理的带宽分配可以避免资源的浪费。