How to make use of limited onboard resources for complex and heavy space tasks has attracted much attention.With the continuous improvement on satellite payload capacity and the increasing complexity of observation re...How to make use of limited onboard resources for complex and heavy space tasks has attracted much attention.With the continuous improvement on satellite payload capacity and the increasing complexity of observation requirements,the importance of satellite autonomous task scheduling research has gradually increased.This article first gives the problem description and mathematical model for the satellite autonomous task scheduling and then follows the steps of"satellite autonomous task scheduling,centralized autonomous collaborative task scheduling architecture,distributed autonomous collaborative task scheduling architecture,solution algorithm".Finally,facing the complex and changeable environment situation,this article proposes the future direction of satellite autonomous task scheduling.展开更多
The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear i...The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear inversion method, which has been given priority in previous research on the IP information extraction method, has three main problems as follows: 1) dependency on the initial model, 2) easily falling into the local minimum, and 3) serious non-uniqueness of solutions. Taking the nonlinearity and nonconvexity of IP information extraction into consideration, a two-stage CO-PSO minimum structure inversion method using compute unified distributed architecture (CUDA) is proposed. On one hand, a novel Cauchy oscillation particle swarm optimization (CO-PSO) algorithm is applied to extract nonlinear IP information from MT sounding data, which is implemented as a parallel algorithm within CUDA computing architecture; on the other hand, the impact of the polarizability on the observation data is strengthened by introducing a second stage inversion process, and the regularization parameter is applied in the fitness function of PSO algorithm to solve the problem of multi-solution in inversion. The inversion simulation results of polarization layers in different strata of various geoelectric models show that the smooth models of resistivity and IP parameters can be obtained by the proposed algorithm, the results of which are relatively stable and accurate. The experiment results added with noise indicate that this method is robust to Gaussian white noise. Compared with the traditional PSO and GA algorithm, the proposed algorithm has more efficiency and better inversion results.展开更多
基金supported by the National Natural Science Foundation of China(72001212,61773120)Hunan Postgraduate Research Innovation Project(CX20210031)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(2014-92)the Innovation Team of Guangdong Provincial Department of Education(2018KCXTD031)。
文摘How to make use of limited onboard resources for complex and heavy space tasks has attracted much attention.With the continuous improvement on satellite payload capacity and the increasing complexity of observation requirements,the importance of satellite autonomous task scheduling research has gradually increased.This article first gives the problem description and mathematical model for the satellite autonomous task scheduling and then follows the steps of"satellite autonomous task scheduling,centralized autonomous collaborative task scheduling architecture,distributed autonomous collaborative task scheduling architecture,solution algorithm".Finally,facing the complex and changeable environment situation,this article proposes the future direction of satellite autonomous task scheduling.
基金Projects(41604117,41204054)supported by the National Natural Science Foundation of ChinaProjects(20110490149,2015M580700)supported by the Research Fund for the Doctoral Program of Higher Education,China+1 种基金Project(2015zzts064)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(16B147)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear inversion method, which has been given priority in previous research on the IP information extraction method, has three main problems as follows: 1) dependency on the initial model, 2) easily falling into the local minimum, and 3) serious non-uniqueness of solutions. Taking the nonlinearity and nonconvexity of IP information extraction into consideration, a two-stage CO-PSO minimum structure inversion method using compute unified distributed architecture (CUDA) is proposed. On one hand, a novel Cauchy oscillation particle swarm optimization (CO-PSO) algorithm is applied to extract nonlinear IP information from MT sounding data, which is implemented as a parallel algorithm within CUDA computing architecture; on the other hand, the impact of the polarizability on the observation data is strengthened by introducing a second stage inversion process, and the regularization parameter is applied in the fitness function of PSO algorithm to solve the problem of multi-solution in inversion. The inversion simulation results of polarization layers in different strata of various geoelectric models show that the smooth models of resistivity and IP parameters can be obtained by the proposed algorithm, the results of which are relatively stable and accurate. The experiment results added with noise indicate that this method is robust to Gaussian white noise. Compared with the traditional PSO and GA algorithm, the proposed algorithm has more efficiency and better inversion results.