期刊文献+
共找到83篇文章
< 1 2 5 >
每页显示 20 50 100
DISPLACEMENT TIME SERIS AT FIDUCIAL STATIONS OBTAINED FROM GPS OBSERVATIONS IN CRUSTAL MOVEMENT OBSEREVATION NETWORK OF CHINA
1
作者 Gu Guohua and Zhang Jing (Center for Analysis and Prediction, CEA,Beijing 100036,China) 《大地测量与地球动力学》 CSCD 2003年第B12期54-61,共8页
A preliminary analysis of the time series of displacements at fiducial stations obtained from continuous GPS observations during the period of Sept. 1998 to Oct. 2001 in the Crustal Movement Observation Network of Chi... A preliminary analysis of the time series of displacements at fiducial stations obtained from continuous GPS observations during the period of Sept. 1998 to Oct. 2001 in the Crustal Movement Observation Network of China (CMONOC) is made. The selection of datum for producing displacement time series suitable for earthquake prediction is discussed. Time series of horizontal crustal displacements are obtained by using a datum of a stable group of 9 stations with very small relative horizontal displacements in eastern China as reference. Time series of vertical crustal displacements are obtained by using a stable group of 7 stations scattered in different regions with relatively small relative vertical displacements as reference. During the period of 2000 to 2001, anomalous horizontal and vertical displacements occurred twice at the fiducial stations in western China. These anomalies may be related to seismic activities of magnitudes about 6 in the Yunnan region on the North South seismic belt. 展开更多
关键词 地壳运动 GPS观测与数据处理 基准站 位移 时间序列分析 位移结果
在线阅读 下载PDF
基于KAN-N-Beats的可解释性滑坡位移预测
2
作者 刘慧婷 谢凯 +2 位作者 田宏岭 贺建飚 张伟 《人民长江》 北大核心 2025年第8期133-138,共6页
针对现有滑坡位移预测模型预测精度不高、泛化性差、模型复杂度高以及传统深度学习算法可解释性差的问题,提出了一种基于KAN-N-Beats的滑坡位移预测模型。使用KAN代替N-Beats中的全连接层,利用KAN采用自适应学习机制的特点,提高了预测... 针对现有滑坡位移预测模型预测精度不高、泛化性差、模型复杂度高以及传统深度学习算法可解释性差的问题,提出了一种基于KAN-N-Beats的滑坡位移预测模型。使用KAN代替N-Beats中的全连接层,利用KAN采用自适应学习机制的特点,提高了预测精度以及泛化性能;同时KAN通过稀疏性、可视化、剪枝、符号化及仿射拟合等多种手段,提高了模型的可解释性。N-Beats则将预测任务分解为趋势和季节性成分,便于理解不同时间序列特征的提取,使得KAN-N-Beats模型预测结果具有更高的可解释性;利用N-Beats模型内部可分解的能力将滑坡位移分解后预测,不需要大量特征工程,减少了KAN-N-Beats模型复杂度,提高了预测效率。使用国家冰川冻土沙漠科学数据中心的三峡库区白水河滑坡和八字门滑坡的数据作为研究数据集,该方法在白水河滑坡ZG118监测点的预测结果与真实位移高度重合,R^(2)和RMSE分别为0.9887和5.0313 mm。在白水河滑坡ZG118以及八字门滑坡ZG110、ZG111监测点的泛化性测试表明,该算法优于其他对比模型,可提高滑坡预测精度,且具有可解释性。研究成果可为提升滑坡位移预测效率提供参考。 展开更多
关键词 滑坡位移预测 可解释性 KAN-N-Beats模型 时序预测 深度学习 白水河滑坡 八字门滑坡
在线阅读 下载PDF
基于EEMD-CNN-LSTM的新型综合模型在滑坡位移预测中的应用 被引量:6
3
作者 刘航源 陈伟涛 +2 位作者 李远耀 徐战亚 李显巨 《地质力学学报》 CSCD 北大核心 2024年第4期633-646,共14页
滑坡位移预测是滑坡稳定性评价的重要环节。尽管基于深度学习范式的时间序列方法预测滑坡位移取得了一定的成果,但由于滑坡位移数据的非平稳性、周期性和趋势性变化特征,导致当前时间序列模型的滑坡位移的多变量预测容易过拟合。为解决... 滑坡位移预测是滑坡稳定性评价的重要环节。尽管基于深度学习范式的时间序列方法预测滑坡位移取得了一定的成果,但由于滑坡位移数据的非平稳性、周期性和趋势性变化特征,导致当前时间序列模型的滑坡位移的多变量预测容易过拟合。为解决这一问题,针对滑坡位移数据的波动性和由周期项与趋势项位移叠加组成的特性,提出一种基于孤立森林(Isolation Forest,IF)异常检测、集成经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、卷积神经网络(Convolutional Neural Networks,CNN)和长短期记忆神经网络(Long Short-Term Memory,LSTM)相结合的滑坡位移预测模型。选择三峡库区以降雨为影响因子的阶跃型白家包滑坡为研究对象,引入IF算法对滑坡原始位移数据进行异常检测,使用EEMD方法提取滑坡趋势项和周期项位移,通过CNN捕捉局部周期项和趋势模式,并基于LSTM模型预测总体位移。结果表明,EEMD-CNN-LSTM在预测降雨情况时滑坡总体位移的均方根误差(RMSE)、平均绝对误差(MAE)、评价绝对百分比误差(MAPE)和决定系数(R2)4种指标分别为0.4190、0.3139、0.2379和0.9997,前3种精度评价指标较现有模型分别提升32.3%、25.1%、7.3%。相较于传统的LSTM模型、随机森林方法和EEMD-LSTM方法,EEMD-CNN-LSTM模型在有、无降雨这一外部影响因素下具有显著优势,能够较大地降低过拟合,提高预测的准确性。 展开更多
关键词 滑坡位移预测 时间序列模型 卷积神经网络 集合经验模态分解 深度学习
在线阅读 下载PDF
基于粒子群-高斯过程回归耦合算法的滑坡位移时序分析预测智能模型 被引量:33
4
作者 徐冲 刘保国 +1 位作者 刘开云 郭佳奇 《岩土力学》 EI CAS CSCD 北大核心 2011年第6期1669-1675,共7页
高斯过程回归(GPR)学习机有着容易实现、超参数自适应获取及预测输出具有概率意义等优点。通常采用共轭梯度法获取GPR超参数,但其存在优化效果对初值依赖性太强,迭代次数难以确定,易陷入局部最优的缺点。改用粒子群优化(PSO)算法进行最... 高斯过程回归(GPR)学习机有着容易实现、超参数自适应获取及预测输出具有概率意义等优点。通常采用共轭梯度法获取GPR超参数,但其存在优化效果对初值依赖性太强,迭代次数难以确定,易陷入局部最优的缺点。改用粒子群优化(PSO)算法进行最优超参数搜索,形成粒子群-高斯过程回归耦合算法(PSO-GPR)。将该算法引入三峡永久船闸高边坡、卧龙寺新滑坡、链子崖滑坡3个不同的典型滑坡变形时序分析中,对每个滑坡分别采用稳态核及一种新式神经网络(NN)、平方指数(SE)、有理二次型(RQ)3种单一核函数进行外推预报测试。工程应用表明,基于3种不同单一核函数的粒子群-高斯过程回归算法(PSO-GPR)均能完全适应不同滑坡时序分析,其中以NN核函数外推预测效果最佳,平均相对误差分别为6.37%、7.62%、1.07%,从而改善了在进行不同滑坡变形时序分析时采用单一核函数的核机器外推能力存在较大差异性的问题,提高了单一核函数对不同数据类型的兼容性。 展开更多
关键词 滑坡 粒子群优化 高斯过程回归 时序分析 位移预报
在线阅读 下载PDF
基于时间序列与GWO-ELM模型的滑坡位移预测 被引量:31
5
作者 廖康 吴益平 +2 位作者 李麟玮 苗发盛 薛阳 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第3期619-626,共8页
针对三峡库区的阶跃型滑坡位移特征,以白水河滑坡为例,提出一种基于时间序列和灰狼优化的极限学习机(GWO-ELM)位移预测模型。首先,根据滑坡的内在演化规律和外部影响因素,建立滑坡位移的时间序列模型,将监测位移分解为趋势性位移和周期... 针对三峡库区的阶跃型滑坡位移特征,以白水河滑坡为例,提出一种基于时间序列和灰狼优化的极限学习机(GWO-ELM)位移预测模型。首先,根据滑坡的内在演化规律和外部影响因素,建立滑坡位移的时间序列模型,将监测位移分解为趋势性位移和周期性位移,并运用稳健加权最小二乘法的三次多项式对趋势性位移进行拟合,以此得到周期性位移。其次,对位移监测数据进行分析,选取周期性位移的影响因子,分别通过GWO-ELM、极限学习机(ELM)和灰狼优化的支持向量机(GWO-SVM)模型对周期性位移进行预测。研究结果表明:GWO-ELM预测模型具有良好的泛化能力,能有效减少人为误差,在预测精度上,明显优于ELM和GWO-SVM模型。基于时间序列与GWO-ELM位移预测模型具有较高的预测精度和泛化能力,是一种有效的滑坡位移预测方法。 展开更多
关键词 滑坡位移预测 时间序列 GWO-ELM模型 趋势性位移 周期性位移
在线阅读 下载PDF
混沌序列WA-ELM耦合模型在滑坡位移预测中的应用 被引量:46
6
作者 周超 殷坤龙 黄发明 《岩土力学》 EI CAS CSCD 北大核心 2015年第9期2674-2680,共7页
针对滑坡位移序列的混沌特性和传统时间序列预测模型的不足,提出了一种基于混沌时间序列的小波分解-极限学习机(WA-ELM)滑坡位移预测模型。该模型以滑坡位移序列混沌特性分析为基础,应用小波分析将位移序列分解为具有不同频率特征的分量... 针对滑坡位移序列的混沌特性和传统时间序列预测模型的不足,提出了一种基于混沌时间序列的小波分解-极限学习机(WA-ELM)滑坡位移预测模型。该模型以滑坡位移序列混沌特性分析为基础,应用小波分析将位移序列分解为具有不同频率特征的分量,对各特征分量分别进行相空间重构并应用极限学习机进行预测,最后将各特征分量预测值叠加,得到原始位移序列的预测值。以三峡库区八字门滑坡为例,并与小波分析-支持向量机(WA-SVM)以及单独ELM模型进行对比研究。结果表明,基于混沌时间序列的WA-ELM模型预测精度较高且具有较好的通用性与稳定性,是一种有效的滑坡位移预测方法。 展开更多
关键词 极限学习机 混沌时间序列 小波分析 相空间重构 滑坡位移
在线阅读 下载PDF
位移时序预测的APSO-WLSSVM模型及应用研究 被引量:12
7
作者 徐卫亚 徐飞 刘大文 《岩土工程学报》 EI CAS CSCD 北大核心 2009年第3期313-318,共6页
引入改进的粒子群算法对小波核函数最小二乘支持向量机进行优化,提出了位移时间序列预测的改进粒子群优化小波最小二乘支持向量机预测模型(APSO-WLSSVM)。该模型具有小波变换的良好时、频域分辨能力和支持向量机的非线性学习能力;同时... 引入改进的粒子群算法对小波核函数最小二乘支持向量机进行优化,提出了位移时间序列预测的改进粒子群优化小波最小二乘支持向量机预测模型(APSO-WLSSVM)。该模型具有小波变换的良好时、频域分辨能力和支持向量机的非线性学习能力;同时利用粒子群算法优化小波最小二乘支持向量机的参数,避免了人为选择参数的盲目性,从而提高了模型的预测精度。为证明该模型的优越性,将该模型与传统的高斯核函数支持向量机模型的预测结果作了对比,结果表明该模型较传统方法预测精度有了明显提高。最后将该模型用于锦屏一级水电站左岸边坡和导流洞进行变形预测,预测结果表明该方法科学可靠,在岩土体位移时序预测中具有良好的实际应用价值。 展开更多
关键词 小波函数 最小二乘支持向量机 粒子群算法 位移时间序列预测
在线阅读 下载PDF
基于支持向量机-马尔可夫链的位移时序预测 被引量:16
8
作者 徐飞 徐卫亚 《岩土力学》 EI CAS CSCD 北大核心 2010年第3期944-948,共5页
结合支持向量机和马尔可夫链,提出了一种新的位移时序预测模型——支持向量机-马尔可夫链预测模型(SVM-MC)。通过对实测位移值的学习,利用经粒子群算法优化的支持向量机对位移时间序列的宏观发展趋势进行滚动预测;在此基础上应用马尔可... 结合支持向量机和马尔可夫链,提出了一种新的位移时序预测模型——支持向量机-马尔可夫链预测模型(SVM-MC)。通过对实测位移值的学习,利用经粒子群算法优化的支持向量机对位移时间序列的宏观发展趋势进行滚动预测;在此基础上应用马尔可夫链确定位移时序的状态转移概率矩阵,通过对状态的划分、实测值与支持向量机拟合值的绝对误差及相对误差等指标的分析,实现了对预测结果的改进。将该模型应用到某工程永久船闸高边坡的位移时序预测中,结果表明,该模型具有科学可靠、预测精度高的优点,在岩土体位移时序预测中具有有一定工程应用价值。 展开更多
关键词 支持向量机 马尔可夫链 位移时间序列 粒子群优化
在线阅读 下载PDF
基于时间序列与混合核函数SA-SVR的滑坡位移预测模型研究 被引量:15
9
作者 尚敏 熊德兵 +1 位作者 张惠强 赵国飞 《工程地质学报》 CSCD 北大核心 2022年第2期575-588,共14页
本文针对阶跃型滑坡变形定量预测困难,提出一种基于时间序列分解与混合核函数SA-SVR的滑坡位移预测模型。首先基于时间序列分解原理,反复使用指数平滑法将滑坡累积位移分解为趋势项位移和周期项位移,使分解后的趋势项位移较平滑且能保... 本文针对阶跃型滑坡变形定量预测困难,提出一种基于时间序列分解与混合核函数SA-SVR的滑坡位移预测模型。首先基于时间序列分解原理,反复使用指数平滑法将滑坡累积位移分解为趋势项位移和周期项位移,使分解后的趋势项位移较平滑且能保证周期项位移的预测精度。同时针对多项式预测容易过拟合造成预测值偏离真实值的问题,采用K-flod交叉验证的3次多项式对趋势项位移进行预测;通过SVR核函数性质,构造泛化能力和学习能力都较强的混合核函数作为SVR模型的核方法,以滑坡诱发因子作为SVR模型输入向量,以模拟退火算法(SA)对使用混合核函数的SVR模型进行参数寻优,从而建立混合核函数的SA-SVR模型预测周期项位移;最后合并趋势项位移和周期项位移得到总位移预测值。以三峡库区白家包滑坡为例,选取ZG325监测点2012年1月~2020年9月数据进行研究,并以ZG324监测点作为辅助验证。结果表明,相较于传统SVR预测模型,模拟退火算法(SA)在参数寻优方面表现良好,混合核函数对SVR模型更加敏感,能较大幅度提高预测精度,具有较高的应用和推广价值。 展开更多
关键词 白家包滑坡 位移预测 时间序列 混合核函数 SA-SVR模型
在线阅读 下载PDF
GNSS位移时序中粗差与阶跃的自动化改正算法
10
作者 吴浩 钟敏 +1 位作者 沈迎春 田嘉翔 《导航定位学报》 北大核心 2025年第4期19-29,共11页
针对全球卫星导航系统(GNSS)位移时序中由于存在粗差和阶跃,导致很难准确提取地壳形变信号,而现有研究阶跃改正往往依赖于先验信息,须人工检验,不利于高精度与自动化处理的问题,提出一种结合长短期记忆神经网络(LSTM)和抗泄漏最小二乘... 针对全球卫星导航系统(GNSS)位移时序中由于存在粗差和阶跃,导致很难准确提取地壳形变信号,而现有研究阶跃改正往往依赖于先验信息,须人工检验,不利于高精度与自动化处理的问题,提出一种结合长短期记忆神经网络(LSTM)和抗泄漏最小二乘谱分析(ALLSSA)算法的自动化改正方法:利用LSTM学习GNSS位移时序复杂特征,实现抗阶跃干扰的粗差精准检测与去除;然后通过ALLSSA算法识别并改正位移时序中的阶跃问题。实验结果表明,提出的方法应用于多个GNSS位移时序粗差和阶跃问题的改正,与轨道与永久阵列中心(SOPAC)经过后处理的位移速率的差异为0.06~0.62 mm/a,均方根误差(RMSE)平均提升19.2%,证明该方法不仅可提高GNSS位移时序的观测精度,还可减少人工干预,能够为高精度GNSS应用提供参考。 展开更多
关键词 全球卫星导航系统(GNSS)位移时序 粗差探测 阶跃探测 长短期记忆(LSTM)神经网络 抗泄漏最小二乘谱分析(ALLSSA)算法
在线阅读 下载PDF
边坡位移LMD-BP神经网络模型研究 被引量:5
11
作者 于伟 蔡璟珞 安凤平 《计算机应用与软件》 CSCD 北大核心 2013年第9期107-109,186,共4页
结合局部均值分解LMD(Local mean decomposition)算法和BP神经网络算法,提出一种全新的局部均值分解——BP神经网络位移时序预测模型。通过把实际监测的位移值作为训练样本,利用局部均值分解算法对其进行高度的自适应分解,得到多个生产... 结合局部均值分解LMD(Local mean decomposition)算法和BP神经网络算法,提出一种全新的局部均值分解——BP神经网络位移时序预测模型。通过把实际监测的位移值作为训练样本,利用局部均值分解算法对其进行高度的自适应分解,得到多个生产函数PF(Product function)分量;而后通过BP神经网络模型对每一个PF分量进行预测,再把各个PF分量预测值进行重构累加,即可得到位移的预测值。通过BP神经网络对相关参数进行优化,达到了对于预测精度的改善。将该模型应用到永久船闸高边坡的三个监测点上进行位移时序预测中,结果表明,预测精度较高,具有一定的科学依据,在边坡体位移时序预测领域中具有极大的潜在价值。 展开更多
关键词 LMD 位移时序 BP神经网络边坡
在线阅读 下载PDF
基于COA-LSSVM模型的边坡位移时序预测 被引量:2
12
作者 张冬梅 徐卫亚 赵博 《水电能源科学》 北大核心 2014年第5期105-108,100,共5页
鉴于预测边坡位移变化对边坡稳定性的重要意义,利用布谷鸟优化算法(COA)对最小二乘支持向量机(LSSVM)的核函数参数和惩罚因子进行寻优,从而建立了边坡位移时序预测的COA-LSSVM模型,并将该模型应用于锦屏一级水电站左岸高边坡变形预测中... 鉴于预测边坡位移变化对边坡稳定性的重要意义,利用布谷鸟优化算法(COA)对最小二乘支持向量机(LSSVM)的核函数参数和惩罚因子进行寻优,从而建立了边坡位移时序预测的COA-LSSVM模型,并将该模型应用于锦屏一级水电站左岸高边坡变形预测中。与PSO-LSSVM模型的预测结果对比表明,COA-LSSVM模型具有更高的预测精度,预测结果更接近于实际的监测数据。 展开更多
关键词 边坡 预测 位移时序 最小二乘支持向量机 布谷鸟优化算法
在线阅读 下载PDF
基于EEMD-Prophet-LSTM的滑坡位移预测 被引量:6
13
作者 王震豪 聂闻 +1 位作者 许汉华 简文彬 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2023年第4期514-522,共9页
对于阶跃型滑坡位移这一非稳态自然过程,提出一种结合集合经验模态分解法(EEMD)、Prophet和长短时记忆网络(LSTM)的滑坡位移预测方法。以白水河滑坡位移数据为例,采用EEMD将位移时间序列分解为若干个本征模态函数(IMF)和残差(RES),将包... 对于阶跃型滑坡位移这一非稳态自然过程,提出一种结合集合经验模态分解法(EEMD)、Prophet和长短时记忆网络(LSTM)的滑坡位移预测方法。以白水河滑坡位移数据为例,采用EEMD将位移时间序列分解为若干个本征模态函数(IMF)和残差(RES),将包含周期因素、随机因素的IMF叠加视为波动项,RES视为趋势项。分别采用Prophet和LSTM预测趋势项与波动项,两项预测结果叠加得到滑坡位移预测值。结果表明:该方法对于少量数据的白水河滑坡位移预测拟合度(R^(2))达到0.98以上,优于支持向量机、人工神经网络等传统机器学习方法。且此方法对八字门滑坡各监测点的预测精度R^(2)同样在0.96以上,证明了此方法的有效性。 展开更多
关键词 滑坡位移 时间序列 集合经验模态分解 PROPHET 长短时记忆网络
在线阅读 下载PDF
基于LS-SVM模型的白水河滑坡台阶状位移预测 被引量:15
14
作者 李仕波 李德营 +1 位作者 张玉恩 李杰 《长江科学院院报》 CSCD 北大核心 2019年第4期55-59,76,共6页
滑坡位移是滑坡变形破坏最直观的表现,滑坡位移预测成功与否对于判别滑坡的演化趋势至关重要。滑坡位移曲线是受多种影响因素共同作用的非平稳时间序列,以三峡库区白水河滑坡为例,利用HP滤波分析方法提取滑坡位移的趋势项,趋势项位移主... 滑坡位移是滑坡变形破坏最直观的表现,滑坡位移预测成功与否对于判别滑坡的演化趋势至关重要。滑坡位移曲线是受多种影响因素共同作用的非平稳时间序列,以三峡库区白水河滑坡为例,利用HP滤波分析方法提取滑坡位移的趋势项,趋势项位移主要是由滑坡自身特征决定的,具有较明显的非线性递增特性,采用多项式对其进行拟合预测;周期项受多种诱发因子(滑坡演化阶段、季节性降雨、库水位升降等)影响,利用最小二乘支持向量机模型(LS-SVM)对其进行训练与预测。将趋势项和周期项拟合预测结果叠加即为累计位移预测值,结果表明在监测点ZG93和XD-04的预测中,LS-SVM模型均具备较高的评价精度,在台阶状位移特征的滑坡位移预测中具有较好的适应性。 展开更多
关键词 台阶状位移 位移预测 时间序列 滤波分析 最小二乘支持向量机 趋势项 周期项 白水河滑坡
在线阅读 下载PDF
利用时序PS-InSAR监测青藏高原冻土区地表形变 被引量:10
15
作者 洪兆阳 金双根 《测绘通报》 CSCD 北大核心 2021年第1期35-40,共6页
多年冻土及其活动层的变化对研究全球气候变化和生物多样性具有重要意义。传统的冻土测量方法通常只针对特定地点,空间覆盖范围有限,尤其是青藏高原冻土。本文采用C波段Sentinel-1A IW模式数据并结合一种顾及永久散射体的小基线SAR干涉(... 多年冻土及其活动层的变化对研究全球气候变化和生物多样性具有重要意义。传统的冻土测量方法通常只针对特定地点,空间覆盖范围有限,尤其是青藏高原冻土。本文采用C波段Sentinel-1A IW模式数据并结合一种顾及永久散射体的小基线SAR干涉(SBAS)技术,对青藏高原沱沱河地区地面形变和冻融过程进行了研究。探测到的地面位移速率(主要范围为-20~20 mm/a)和位移时间序列反映了多年冻土及活动层的演化。试验结果与水准测量数据具有较好的一致性,且该方法优于一般多时相InSAR方法。此外,分析了SAR成像几何与地表位移之间的关系,解释了在多年冻土区特别是对于山坡的运动趋势。试验结果展示了InSAR的监测能力,并提高了对多年冻土区地表形变的认识。 展开更多
关键词 多年冻土 青藏高原 合成孔径雷达干涉测量(InSAR) 小基线集(SBAS) 地面位移时间序列
在线阅读 下载PDF
分形-V/S法在大坝位移安全监测资料分析中的应用 被引量:3
16
作者 柳志坤 周兰庭 《水电能源科学》 北大核心 2021年第5期97-101,共5页
大坝位移受多种因素的影响,其监测序列往往呈现明显的非平稳性。对此,基于分形理论将V/S分析法应用到大坝位移序列的长程趋势性分析中,剖析了位移序列的分形特性及演变规律,并基于Hurst指数和分形维数定量表征测点时间序列的内在特征,... 大坝位移受多种因素的影响,其监测序列往往呈现明显的非平稳性。对此,基于分形理论将V/S分析法应用到大坝位移序列的长程趋势性分析中,剖析了位移序列的分形特性及演变规律,并基于Hurst指数和分形维数定量表征测点时间序列的内在特征,据此评价大坝变形性态和安全状况,取得了较好效果。分析结果表明,位移序列虽然局部波动,但整体发展态势良好,且具有良好的记忆性和长程相关性,未来变化趋势将与过去保持一致,发展过程具有持久性,变形受确定性因素影响较大,变形以线弹性为主兼具随机性,测点位移状态基本稳定,并有朝稳定性方向发展的趋势。研究成果可为类似工程提供参考。 展开更多
关键词 大坝位移 时间序列 分形理论 V/S 性态分析 安全评价
在线阅读 下载PDF
基于时序分解和SSA-LSTM-Attention模型的尾矿坝位移预测 被引量:5
17
作者 唐宇峰 陈星红 +3 位作者 蔡宇 杨泽林 蒲顺哲 杨超凡 《科学技术与工程》 北大核心 2023年第29期12753-12759,共7页
针对尾矿坝位移变形的动态特性和传统预测模型在进行尾矿坝位移预测中的不足,提出了一种基于时序分解和麻雀搜索算法-长短时记忆-注意力机制(sparrow search algorithm-long short-term memory-attention mechanism,SSA-LSTM-Attention... 针对尾矿坝位移变形的动态特性和传统预测模型在进行尾矿坝位移预测中的不足,提出了一种基于时序分解和麻雀搜索算法-长短时记忆-注意力机制(sparrow search algorithm-long short-term memory-attention mechanism,SSA-LSTM-Attention)模型的尾矿坝位移预测方法。首先,通过改进的自适应噪声完备集合经验模态分解算法(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)将尾矿坝位移监测数据进行分解为趋势项和波动项;其次,一方面采用高斯拟合方法对趋势项进行拟合预测,另一方面通过灰色关联度进行波动项相关影响因子筛选,并将注意力机制与LSTM相结合,建立了基于注意力机制及LSTM的波动项位移预测模型,同时利用SSA对该模型的超参数寻优;最后,将趋势项与波动项叠加得到总的位移预测值。以攀西地区尾矿库为例对模型性能进行了验证,并与反向传播(back propagation,BP)、LSTM、LSTM-Attention等模型进行对比,结果表明,该方法得到的均方根误差、平均绝对误差和确定系数分别0.742 mm、0.553 mm和0.994,所提方法能较大幅度提高尾矿坝位移变形的预测精度。 展开更多
关键词 时序分解 长短时记忆 注意力机制 位移预测 麻雀搜索算法
在线阅读 下载PDF
基于改进灰狼优化与支持向量回归的滑坡位移预测 被引量:5
18
作者 任帅 纪元法 +2 位作者 孙希延 韦照川 林子安 《计算机应用》 CSCD 北大核心 2024年第3期972-982,共11页
针对滑坡位移难以预测、影响因素难以选择等问题,提出一种结合了二次移动平均(DMA)法、变分模态分解(VMD)、改进灰狼优化(IGWO)算法与支持向量回归(SVR)的模型进行滑坡位移预测。首先,利用DMA提取滑坡位移趋势项和周期项,采用多项式拟... 针对滑坡位移难以预测、影响因素难以选择等问题,提出一种结合了二次移动平均(DMA)法、变分模态分解(VMD)、改进灰狼优化(IGWO)算法与支持向量回归(SVR)的模型进行滑坡位移预测。首先,利用DMA提取滑坡位移趋势项和周期项,采用多项式拟合对趋势项进行预测;其次,对滑坡周期项的影响因素进行分类,采用VMD对原始影响因子序列进行分解获得最优序列;再次,提出一种结合SVR与基于改进Circle多策略的灰狼优化算法CTGWO-SVR(Circle Tactics Grey Wolf Optimizer with SVR)对滑坡周期项进行预测;最后采用时间序列加法模型求出累计位移预测序列,并采用灰色预测的后验证差校验和小概率误差对模型进行评价。实验结果表明,与GA-SVR和GWO-SVR模型相比,CTGWO-SVR的预测精度更高,拟合度达到0.979,均方根误差分别减小了51.47%与59.25%,预测精度等级为一级,可满足滑坡预测的实时性和准确性要求。 展开更多
关键词 滑坡位移预测 位移分解 时间序列 变分模态分解 灰色关联分析 灰狼优化算法 支持向量回归
在线阅读 下载PDF
一种滑动检测算法下的滑坡位移时序分解方法 被引量:3
19
作者 冯谕 曾怀恩 涂鹏飞 《长江科学院院报》 CSCD 北大核心 2024年第3期126-133,147,共9页
针对“阶跃式”滑坡位移时序分解模型力学解释性不强的缺陷,根据西原蠕变本构模型与自适应改进遗传算法模型,提出滑动R_(nl)阶跃点检测方法与改进加权移动平均修正阶跃项位移方法,并将该方法应用于白水河滑坡位移时序分解。将滑动R_(nl... 针对“阶跃式”滑坡位移时序分解模型力学解释性不强的缺陷,根据西原蠕变本构模型与自适应改进遗传算法模型,提出滑动R_(nl)阶跃点检测方法与改进加权移动平均修正阶跃项位移方法,并将该方法应用于白水河滑坡位移时序分解。将滑动R_(nl)阶跃点检测结果与MK检验结果、滑动t检验结果以及Bayes检测结果作对比。结果表明,滑动R_(nl)阶跃点检测结果更加准确与适用;同时将新型滑坡位移时序分解结果与二次移动平均时序分解结果、三次指数平滑时序分解结果以及VMD时序分解结果作对比。结果表明,新型滑坡位移时序分解方法解决了滑坡趋势项位移无规律、无力学解释性的问题,且在时序分解加法模式中单独引入滑坡位移预测中最重要的阶跃项位移,分析预测更具有针对性。因此,新型时序分解模型有一定的工程价值与时序预测借鉴价值。 展开更多
关键词 滑坡位移 时序分解 阶跃项位移 蠕变模型 遗传算法 滑动检测
在线阅读 下载PDF
基于累积位移特征与时间序列组合模型的滑坡位移预测
20
作者 汪标 易庆林 +2 位作者 邓茂林 童权 刘开心 《工程地质学报》 CSCD 北大核心 2024年第5期1629-1639,共11页
分析滑坡累积位移演化特征对位移预测具有重要的意义,根据不同增长趋势的位移曲线构造合适的模型来预测位移,将有效提高预测结果的准确度。本文分析三峡库区阶跃型滑坡累积位移变化趋势,将其位移曲线划分为4类特征:等幅-阶跃型、减幅-... 分析滑坡累积位移演化特征对位移预测具有重要的意义,根据不同增长趋势的位移曲线构造合适的模型来预测位移,将有效提高预测结果的准确度。本文分析三峡库区阶跃型滑坡累积位移变化趋势,将其位移曲线划分为4类特征:等幅-阶跃型、减幅-阶跃型、增幅-阶跃型、复合型,并建立时间序列组合预测模型。以八字门滑坡监测点ZG111及白家包滑坡监测点ZG326为例,依据时间序列原理,采用变分模态分解法(VMD)将累积位移分解为趋势性位移、周期性位移、随机性位移;利用一元线性回归、幂函数非线性回归方法对趋势性位移进行建模分析,预测结果采用加权改进后的最小二乘法(WLS);用麻雀搜索算法(SSA)优化BP神经网络模型,并结合滚动预测的思想,预测周期性位移、随机性位移。最终得到的各位移预测值之和即累积位移预测结果,结果表明:趋势性位移预测MAPE分别为1.2%、0.77%;周期性位移、随机性位移拟合效果较好,预测结果能较好的符合位移整体变化趋势;累积位移预测MAPE在2%以内,预测结果与实际值具有良好的一致性。本文提出的预测模型满足预测精度的要求,能完成滑坡将来位移量的预测,具有较强的工程实用价值,为滑坡灾害预测和防治方面的研究工作提供指导。 展开更多
关键词 累积位移特征 时间序列 加权最小二乘法 麻雀搜索算法 BP神经网络
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部