This paper introduces some final results of some key technologies in magnetic disk drives. We dicuss the design and experiment of thin film head, magnetic fluid exclusion seal system, head disk interface and the engin...This paper introduces some final results of some key technologies in magnetic disk drives. We dicuss the design and experiment of thin film head, magnetic fluid exclusion seal system, head disk interface and the engineering appilcations of these technologies in magnetic disk drives.展开更多
A new specimen geometry-the double edge-cracked Brazilian disk and a relevant fracture analysis byweight function method are proposed for the investigation of rock fracture caused by compression-shear loading. Notonly...A new specimen geometry-the double edge-cracked Brazilian disk and a relevant fracture analysis byweight function method are proposed for the investigation of rock fracture caused by compression-shear loading. Notonly can the mixed mode fracture with any ratio of KⅠ/KⅡ be achieved, but also the pure mode Ⅱ crack extensioncan be obtained. The combined mode fracture analysis for this geometry shows that diametral compression in the far-field can induce a compression-shear stress state in the singular stress field ahead of crack tips. Experimental investi-gations conducted on marble specimens show that the pure mode Ⅱ crack extension can be obtained when the dimen-sionless crack length a>0.7 and the inclined crack angle 5°≤ψ≤40°. Normalized mode Ⅰ and mode Ⅱ stress inten-sity factors decrease from -0.45 and 2.47 at ψ=5° to -1.65 and 1.52 at ψ=40°, respectively. The strains at threepoints of specimen are also measured in order to investigate the influence of stress singularity on initial crack exten-sion. The results show that the principal orientations of strain at three points are very stable in the loading process.The derived formulae are quite explicit, and the specimen geometry is easy to fabricate and convenient to achieve thepure mode Ⅱ crack extension. Therefore, it can hopefully be used to obtain mode Ⅱ fracture toughness of rock.展开更多
A detailed analysis of mode II stress intensity factors(SIFs) for the double edge cracked Brazilian disk subjected to different diametral compression is presented using a weight function method. The mode II SIFs at cr...A detailed analysis of mode II stress intensity factors(SIFs) for the double edge cracked Brazilian disk subjected to different diametral compression is presented using a weight function method. The mode II SIFs at crack tips can be obtained by simply calculating an integral of the product of mode II weight function and the shear stress on the prospective crack faces of uncracked disk loaded by a diametral compression. A semi-analytical formula for the calculation of normalized mode II SIF, f _Ⅱ, is derived for different crack lengths (from 0.1 to 0.7) and inclination angles (from 10° to 75°) with respect to loading direction. Comparison between the obtained results and finite element method solutions shows that the weight function method is of high precision. Combined with the authors previous work on mode I fracture analysis, the new specimen geometry can be used to study fracture through any combination of mode I and mode II loading by a simple alignment of the crack relative to the diameter of compression loading, and to obtain pure mode II crack extension. Another advantage of this specimen geometry is that it is available directly from rock core and is also easy to fabricate.展开更多
In order to describe and control the stress distribution and total deformation of bladed disk assemblies used in the aeroengine, a highly efficient and precise method of probabilistic analysis which is called extremum...In order to describe and control the stress distribution and total deformation of bladed disk assemblies used in the aeroengine, a highly efficient and precise method of probabilistic analysis which is called extremum response surface method(ERSM) is produced based on the previous deterministic analysis results with the finite element model(FEM). In this work, many key nonlinear factors, such as the dynamic feature of the temperature load, the centrifugal force and the boundary conditions, are taken into consideration for the model. The changing patterns with time of bladed disk assemblies about stress distribution and total deformation are obtained during the deterministic analysis, and at the same time, the largest deformation and stress nodes of bladed disk assemblies are found and taken as input target of probabilistic analysis in a scientific and reasonable way. Not only their reliability, historical sample, extreme response surface(ERS) and the cumulative probability distribution function but also their sensitivity and effect probability are obtained. Main factors affecting stress distribution and total deformation of bladed disk assemblies are investigated through the sensitivity analysis of the model. Finally, compared with the response surface method(RSM) and the Monte Carlo simulation(MCS), the results show that this new approach is effective.展开更多
The center cracked Brazilian disk subjected to diametral compressive stress uniformly distributed along parts of its cylindrical surface is used to investigate combined mode fracture of brittle material. A fracture a...The center cracked Brazilian disk subjected to diametral compressive stress uniformly distributed along parts of its cylindrical surface is used to investigate combined mode fracture of brittle material. A fracture analysis is made of this specimen configuration. Explicit formulae for mode Ⅰ and mode Ⅱ stress intensity factor calculation are derived based on boundary integral equation method and related numerical solution given by Atkinson. The proposed formulae are valid in wide range of crack length a/R . This configuration can avoid splitting along load line usually occuring in Brazilian test and permit one to achieve easily pure mode Ⅱ crack growth (crack coplanar extension) and any combination of K Ⅰ and K Ⅱ by a simple alignment of crack orientation with respect to load line. SIF values from the present calculation and finite element solution are also given for comparison.展开更多
The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparis...The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparison between OHAM and numerical method shows that OHAM is an exact and high efficient method for solving these kinds of problems. The results are presented to study the velocity and rotation profiles for different physical parameters such as Reynolds number, vortex viscosity parameter, spin gradient viscosity and microinertia density parameter. As an important outcome, the magnitude of the microrotation increases with an increase in the values of injection velocity while it decreases by increasing the values of suction velocity.展开更多
Aimed at the difficulty in revealing the vibration localization mechanism of mistuned bladed disks by using simple non-linear model,a mechanical model of the bladed disk with random mistuning of hysteretic dry frictio...Aimed at the difficulty in revealing the vibration localization mechanism of mistuned bladed disks by using simple non-linear model,a mechanical model of the bladed disk with random mistuning of hysteretic dry friction damping was established.Then,the incremental harmonic balance method was used to analyze the effects of the parameters of bladed disks,such as the mistuning strength of dry friction force,coupled strength,viscous damping ratio and friction strength,on the forced response of the bladed disks.The results show that the vibrational energy localization phenomenon turns up in the tuned bladed disks if the nonlinear friction damping exists,and the random mistuning of the dry friction force intensifies this kind of vibration localization.展开更多
Copolymer of acrylic acid and maleic acid(PMA)was used to remove Hg^2+from aqueous solution by complexation-ultrafiltration(C-UF)through rotating disk membrane(RDM).The effects of P/M(mass ratio of PMA to metal ions),...Copolymer of acrylic acid and maleic acid(PMA)was used to remove Hg^2+from aqueous solution by complexation-ultrafiltration(C-UF)through rotating disk membrane(RDM).The effects of P/M(mass ratio of PMA to metal ions),pH and rotation speed(N)on the interception of Hg^2+were investigated.The interception could reach 99.7%at pH 7.0,P/M 6 and N less than 1890 r/min.The shear stability of PMA-Hg complex was studied by RDM.The critical rotation speed,at which the interception starts to decrease,was 1890 r/min,and the critical shear rate,the smallest shear rate at which PMA-Hg complex begins to dissociate,was 2.50×10^5s^-1 at pH 7.0.Furthermore,the critical radii were obtained at different rotation speeds and pHs.The results showed that the critical radius decreased with the rotation speed and increased with pH.Shear induced dissociation coupling with ultra?ltration(SID-UF)was efficiently used to recover Hg^2+and PMA.展开更多
详细介绍了利用 Disk Manager2000对新硬盘进行安装及安装中盘符交错的问题。安装后如何对硬盘进行维护、分区等。其中介绍了重新分区、正确定位光驱盘符、不同盘之间的文件拷贝,以及怎样创建 For Dos 的启动盘。同时介绍了硬盘检测工具...详细介绍了利用 Disk Manager2000对新硬盘进行安装及安装中盘符交错的问题。安装后如何对硬盘进行维护、分区等。其中介绍了重新分区、正确定位光驱盘符、不同盘之间的文件拷贝,以及怎样创建 For Dos 的启动盘。同时介绍了硬盘检测工具 Run SmartedFender 使用方法。展开更多
Laptop personal computers(LPCs) and their components are vulnerable devices in harsh mechanical environments. One of the most sensitive components of LPCs is hard disk drive(HDD) which needs to be protected against da...Laptop personal computers(LPCs) and their components are vulnerable devices in harsh mechanical environments. One of the most sensitive components of LPCs is hard disk drive(HDD) which needs to be protected against damages attributable to shock and vibration in order to have better magnetic read/write performance. In the present work, a LPC and its HDD are modeled as two degrees of freedom system and the nonlinear optimization method is employed to perform a passive control through minimizing peak of HDD absolute acceleration caused by a base shock excitation. The presented shock excitation is considered as half-sine pulse of acceleration. In addition, eleven inequality constraints are defined based on geometrical limitations and allowable intervals of lumped modal parameters. The target of the optimization is to reach optimum modal parameters of rubber mounts and rubber feet as design variables and subsequently propose new characteristics of rubber mounts and rubber feet to be manufactured for the HDD protection against shock excitation. The genetic algorithm and the modified constrained steepest descent algorithm are employed in order to solve the nonlinear optimization problem for three widely-used commercial cases of HDD. Finally, the results of both optimization methods are compared to make sure about their accuracy.展开更多
Head disk collision models of 'coefficient-of-restitution' are widely used in the head disk interface simulation. A new head disk collision model called 'critical velocity model' has been developed. Nu...Head disk collision models of 'coefficient-of-restitution' are widely used in the head disk interface simulation. A new head disk collision model called 'critical velocity model' has been developed. Numerical simulation of dynamics of a typical Winchester-type slider is presented under the influence of head disk collisions due to disk surface defects such as localize asperities. Two kinds of head disk collision models have been compared and analysed. The results show that the critical velocity is a very important parameter which affects the dynamics of the slider.展开更多
The radial deformation design of turbine disk seriously influences the control of gas turbine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). To improve the design of BTRRC under continuous opera...The radial deformation design of turbine disk seriously influences the control of gas turbine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). To improve the design of BTRRC under continuous operation, the nonlinear dynamic reliability optimization of disk radial deformation was implemented based on extremum response surface method(ERSM), including ERSM-based quadratic function(QF-ERSM) and ERSM-based support vector machine of regression(SR-ERSM). The mathematical models of the two methods were established and the framework of reliability-based dynamic design optimization was developed. The numerical experiments demonstrate that the proposed optimization methods have the promising potential in reducing additional design samples and improving computational efficiency with acceptable precision, in which the SR-ERSM emerges more obviously. Through the case study, we find that disk radial deformation is reduced by about 6.5×10–5 m; δ=1.31×10–3 m is optimal for turbine disk radial deformation design and the proposed methods are verified again. The presented efforts provide an effective optimization method for the nonlinear transient design of motion structures for further research, and enrich mechanical reliability design theory.展开更多
Büeckner Rice weight function method was used to analyse mixed mode fracture of center cracked circular disk subjected to uniaxial compression. Based on Wu Carlsson procedure semi analytical modes Ⅰ and Ⅱ weigh...Büeckner Rice weight function method was used to analyse mixed mode fracture of center cracked circular disk subjected to uniaxial compression. Based on Wu Carlsson procedure semi analytical modes Ⅰ and Ⅱ weight functions were derived from corresponding reference displacement fields and stress intensity factors calculated by finite element method. Normalized mode Ⅰ and mode Ⅱ stress intensity factors, f Ⅰ, f Ⅱ , were derived from the obtained semi analytical weight functions. The results were then fitted into polynomials, the precision is within 0.5%. It is interesting to note that when the inclined angle θ of a crack is less than 15°, the f Ⅰvalues are positive. when θ =15°, the f Ⅰ values are positive for the crack length a varying from 0.1 to 0.7, but when a =0.8, the f Ⅰ takes the negative value -0.51. When θ >15°, all the f Ⅰ values become negative, which denotes that the compression shear mode is achieved at crack tips. These results are very useful in the investigation of mixed mode fracture of brittle materials.展开更多
文摘This paper introduces some final results of some key technologies in magnetic disk drives. We dicuss the design and experiment of thin film head, magnetic fluid exclusion seal system, head disk interface and the engineering appilcations of these technologies in magnetic disk drives.
基金Project (50274074) supported by the National Natural Science Foundation of China
文摘A new specimen geometry-the double edge-cracked Brazilian disk and a relevant fracture analysis byweight function method are proposed for the investigation of rock fracture caused by compression-shear loading. Notonly can the mixed mode fracture with any ratio of KⅠ/KⅡ be achieved, but also the pure mode Ⅱ crack extensioncan be obtained. The combined mode fracture analysis for this geometry shows that diametral compression in the far-field can induce a compression-shear stress state in the singular stress field ahead of crack tips. Experimental investi-gations conducted on marble specimens show that the pure mode Ⅱ crack extension can be obtained when the dimen-sionless crack length a>0.7 and the inclined crack angle 5°≤ψ≤40°. Normalized mode Ⅰ and mode Ⅱ stress inten-sity factors decrease from -0.45 and 2.47 at ψ=5° to -1.65 and 1.52 at ψ=40°, respectively. The strains at threepoints of specimen are also measured in order to investigate the influence of stress singularity on initial crack exten-sion. The results show that the principal orientations of strain at three points are very stable in the loading process.The derived formulae are quite explicit, and the specimen geometry is easy to fabricate and convenient to achieve thepure mode Ⅱ crack extension. Therefore, it can hopefully be used to obtain mode Ⅱ fracture toughness of rock.
文摘A detailed analysis of mode II stress intensity factors(SIFs) for the double edge cracked Brazilian disk subjected to different diametral compression is presented using a weight function method. The mode II SIFs at crack tips can be obtained by simply calculating an integral of the product of mode II weight function and the shear stress on the prospective crack faces of uncracked disk loaded by a diametral compression. A semi-analytical formula for the calculation of normalized mode II SIF, f _Ⅱ, is derived for different crack lengths (from 0.1 to 0.7) and inclination angles (from 10° to 75°) with respect to loading direction. Comparison between the obtained results and finite element method solutions shows that the weight function method is of high precision. Combined with the authors previous work on mode I fracture analysis, the new specimen geometry can be used to study fracture through any combination of mode I and mode II loading by a simple alignment of the crack relative to the diameter of compression loading, and to obtain pure mode II crack extension. Another advantage of this specimen geometry is that it is available directly from rock core and is also easy to fabricate.
基金Projects(51375032,51175017,51245027)supported by the National Natural Science Foundation of China
文摘In order to describe and control the stress distribution and total deformation of bladed disk assemblies used in the aeroengine, a highly efficient and precise method of probabilistic analysis which is called extremum response surface method(ERSM) is produced based on the previous deterministic analysis results with the finite element model(FEM). In this work, many key nonlinear factors, such as the dynamic feature of the temperature load, the centrifugal force and the boundary conditions, are taken into consideration for the model. The changing patterns with time of bladed disk assemblies about stress distribution and total deformation are obtained during the deterministic analysis, and at the same time, the largest deformation and stress nodes of bladed disk assemblies are found and taken as input target of probabilistic analysis in a scientific and reasonable way. Not only their reliability, historical sample, extreme response surface(ERS) and the cumulative probability distribution function but also their sensitivity and effect probability are obtained. Main factors affecting stress distribution and total deformation of bladed disk assemblies are investigated through the sensitivity analysis of the model. Finally, compared with the response surface method(RSM) and the Monte Carlo simulation(MCS), the results show that this new approach is effective.
文摘The center cracked Brazilian disk subjected to diametral compressive stress uniformly distributed along parts of its cylindrical surface is used to investigate combined mode fracture of brittle material. A fracture analysis is made of this specimen configuration. Explicit formulae for mode Ⅰ and mode Ⅱ stress intensity factor calculation are derived based on boundary integral equation method and related numerical solution given by Atkinson. The proposed formulae are valid in wide range of crack length a/R . This configuration can avoid splitting along load line usually occuring in Brazilian test and permit one to achieve easily pure mode Ⅱ crack growth (crack coplanar extension) and any combination of K Ⅰ and K Ⅱ by a simple alignment of crack orientation with respect to load line. SIF values from the present calculation and finite element solution are also given for comparison.
文摘The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparison between OHAM and numerical method shows that OHAM is an exact and high efficient method for solving these kinds of problems. The results are presented to study the velocity and rotation profiles for different physical parameters such as Reynolds number, vortex viscosity parameter, spin gradient viscosity and microinertia density parameter. As an important outcome, the magnitude of the microrotation increases with an increase in the values of injection velocity while it decreases by increasing the values of suction velocity.
基金Project(2007CB707706) supported by the National Basic Research Program of China
文摘Aimed at the difficulty in revealing the vibration localization mechanism of mistuned bladed disks by using simple non-linear model,a mechanical model of the bladed disk with random mistuning of hysteretic dry friction damping was established.Then,the incremental harmonic balance method was used to analyze the effects of the parameters of bladed disks,such as the mistuning strength of dry friction force,coupled strength,viscous damping ratio and friction strength,on the forced response of the bladed disks.The results show that the vibrational energy localization phenomenon turns up in the tuned bladed disks if the nonlinear friction damping exists,and the random mistuning of the dry friction force intensifies this kind of vibration localization.
基金Project(21476265)supported by the National Natural Science Foundation of China。
文摘Copolymer of acrylic acid and maleic acid(PMA)was used to remove Hg^2+from aqueous solution by complexation-ultrafiltration(C-UF)through rotating disk membrane(RDM).The effects of P/M(mass ratio of PMA to metal ions),pH and rotation speed(N)on the interception of Hg^2+were investigated.The interception could reach 99.7%at pH 7.0,P/M 6 and N less than 1890 r/min.The shear stability of PMA-Hg complex was studied by RDM.The critical rotation speed,at which the interception starts to decrease,was 1890 r/min,and the critical shear rate,the smallest shear rate at which PMA-Hg complex begins to dissociate,was 2.50×10^5s^-1 at pH 7.0.Furthermore,the critical radii were obtained at different rotation speeds and pHs.The results showed that the critical radius decreased with the rotation speed and increased with pH.Shear induced dissociation coupling with ultra?ltration(SID-UF)was efficiently used to recover Hg^2+and PMA.
文摘Laptop personal computers(LPCs) and their components are vulnerable devices in harsh mechanical environments. One of the most sensitive components of LPCs is hard disk drive(HDD) which needs to be protected against damages attributable to shock and vibration in order to have better magnetic read/write performance. In the present work, a LPC and its HDD are modeled as two degrees of freedom system and the nonlinear optimization method is employed to perform a passive control through minimizing peak of HDD absolute acceleration caused by a base shock excitation. The presented shock excitation is considered as half-sine pulse of acceleration. In addition, eleven inequality constraints are defined based on geometrical limitations and allowable intervals of lumped modal parameters. The target of the optimization is to reach optimum modal parameters of rubber mounts and rubber feet as design variables and subsequently propose new characteristics of rubber mounts and rubber feet to be manufactured for the HDD protection against shock excitation. The genetic algorithm and the modified constrained steepest descent algorithm are employed in order to solve the nonlinear optimization problem for three widely-used commercial cases of HDD. Finally, the results of both optimization methods are compared to make sure about their accuracy.
文摘Head disk collision models of 'coefficient-of-restitution' are widely used in the head disk interface simulation. A new head disk collision model called 'critical velocity model' has been developed. Numerical simulation of dynamics of a typical Winchester-type slider is presented under the influence of head disk collisions due to disk surface defects such as localize asperities. Two kinds of head disk collision models have been compared and analysed. The results show that the critical velocity is a very important parameter which affects the dynamics of the slider.
基金Project(51275024)supported by the National Natural Science Foundations of ChinaProject(2015M580037)supported by China’s Postdoctoral Science FundingProjects(XJ2015002,G-YZ90)supported by Hong Kong Scholars Program Foundations,China
文摘The radial deformation design of turbine disk seriously influences the control of gas turbine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). To improve the design of BTRRC under continuous operation, the nonlinear dynamic reliability optimization of disk radial deformation was implemented based on extremum response surface method(ERSM), including ERSM-based quadratic function(QF-ERSM) and ERSM-based support vector machine of regression(SR-ERSM). The mathematical models of the two methods were established and the framework of reliability-based dynamic design optimization was developed. The numerical experiments demonstrate that the proposed optimization methods have the promising potential in reducing additional design samples and improving computational efficiency with acceptable precision, in which the SR-ERSM emerges more obviously. Through the case study, we find that disk radial deformation is reduced by about 6.5×10–5 m; δ=1.31×10–3 m is optimal for turbine disk radial deformation design and the proposed methods are verified again. The presented efforts provide an effective optimization method for the nonlinear transient design of motion structures for further research, and enrich mechanical reliability design theory.
文摘Büeckner Rice weight function method was used to analyse mixed mode fracture of center cracked circular disk subjected to uniaxial compression. Based on Wu Carlsson procedure semi analytical modes Ⅰ and Ⅱ weight functions were derived from corresponding reference displacement fields and stress intensity factors calculated by finite element method. Normalized mode Ⅰ and mode Ⅱ stress intensity factors, f Ⅰ, f Ⅱ , were derived from the obtained semi analytical weight functions. The results were then fitted into polynomials, the precision is within 0.5%. It is interesting to note that when the inclined angle θ of a crack is less than 15°, the f Ⅰvalues are positive. when θ =15°, the f Ⅰ values are positive for the crack length a varying from 0.1 to 0.7, but when a =0.8, the f Ⅰ takes the negative value -0.51. When θ >15°, all the f Ⅰ values become negative, which denotes that the compression shear mode is achieved at crack tips. These results are very useful in the investigation of mixed mode fracture of brittle materials.