期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Cobalt crust recognition based on kernel Fisher discriminant analysis and genetic algorithm in reverberation environment 被引量:2
1
作者 ZHAO Hai-ming ZHAO Xiang +1 位作者 HAN Feng-lin WANG Yan-li 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期179-193,共15页
Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust min... Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust mining area,a method based on multiple-feature sets is proposed.Features of the target echoes are extracted by linear prediction method and wavelet analysis methods,and the linear prediction coefficient and linear prediction cepstrum coefficient are also extracted.Meanwhile,the characteristic matrices of modulus maxima,sub-band energy and multi-resolution singular spectrum entropy are obtained,respectively.The resulting features are subsequently compressed by kernel Fisher discriminant analysis(KFDA),the output features are selected using genetic algorithm(GA)to obtain optimal feature subsets,and recognition results of classifier are chosen as genetic fitness function.The advantages of this method are that it can describe the signal features more comprehensively and select the favorable features and remove the redundant features to the greatest extent.The experimental results show the better performance of the proposed method in comparison with only using KFDA or GA. 展开更多
关键词 feature extraction kernel Fisher discriminant analysis(KFDA) genetic algorithm multiple feature sets cobalt crust recognition
在线阅读 下载PDF
结合多特征与线性判别分析的图像检索 被引量:3
2
作者 丁功鸿 黄山 《计算机应用与软件》 北大核心 2024年第4期212-218,共7页
卷积神经网络的全连接层特征缺乏对图像底层信息的描述,导致部分样本无法被成功检索。并且全连接层特征维度高,检索效率低下。针对这种情况,提出一种结合线性判别分析和多层特征的图像检索方法。该方法利用卷积神经网络提取卷积层和全... 卷积神经网络的全连接层特征缺乏对图像底层信息的描述,导致部分样本无法被成功检索。并且全连接层特征维度高,检索效率低下。针对这种情况,提出一种结合线性判别分析和多层特征的图像检索方法。该方法利用卷积神经网络提取卷积层和全连接层特征,并融合HSV特征,使用线性判别分析对融合特征降维。多层特征能增加图像的区分度,提升识别准确率。与其他算法的实验结果表明,该方法在检索精度和检索速度上有一定的提高。 展开更多
关键词 深度学习 多特征 线性判别分析 图像检索
在线阅读 下载PDF
基于多特征判别分析的指纹图像分割方法 被引量:7
3
作者 陈小光 封举富 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第4期579-584,共6页
针对指纹图像的分割问题,提出了一种基于多特征判别分析的自适应分割算法。对于给定的待分割图像,该算法从每个特征在该图像上整体的分布出发,构造出综合考虑各个特征的两类分类能力的分类器,然后利用该分类器对图像中的每个子块做出前... 针对指纹图像的分割问题,提出了一种基于多特征判别分析的自适应分割算法。对于给定的待分割图像,该算法从每个特征在该图像上整体的分布出发,构造出综合考虑各个特征的两类分类能力的分类器,然后利用该分类器对图像中的每个子块做出前景或背景的判断。与已有的基于分类器的分割方法相比,该方法无需从数据库中人工采集样本用以训练分类器,实现了图像级别的自适应分割。算法在FVC2004竞赛的公开数据库上进行了测试,实验结果证明了该分割算法的有效性。 展开更多
关键词 指纹图像分割 多特征判别分析 图像处理
在线阅读 下载PDF
多模型融合的多标签图像自动标注 被引量:10
4
作者 张静 胡微微 +1 位作者 陈志华 袁玉波 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第3期472-478,共7页
为了实现更为准确的复杂语义内容图像理解,提出一种融合多模型的多标签图像自动标注方法.该方法采用3个不同的模型分别对图像语义内容进行分析:在前景语义概念检测中,提出一种基于多特征的视觉显著性分析方法,并利用多Nystrm近似核对... 为了实现更为准确的复杂语义内容图像理解,提出一种融合多模型的多标签图像自动标注方法.该方法采用3个不同的模型分别对图像语义内容进行分析:在前景语义概念检测中,提出一种基于多特征的视觉显著性分析方法,并利用多Nystrm近似核对前景对象的语义进行判别分析;对于背景概念检测,提出一种区域语义分析的方法;通过构造基于潜语义分析的语义相关矩阵来消除标注错误的标签.根据前景和背景的语义和视觉特征,分别采用不同的模型提取前景和背景标注词,而语义相关分析能够有效地提高标注的准确性.实验结果表明,该多模型融合标注方法在图像的深层语义分析以及多标签标注方面具有较好的效果;与同类算法相比,能够有效地减少错误标注的标签数目,得到更加准确的标注结果. 展开更多
关键词 图像标注 多模型 MNKDA 区域语义分析 语义相关分析
在线阅读 下载PDF
融合光谱-空间多特征的高光谱影像张量特征提取 被引量:3
5
作者 薛志祥 余旭初 +1 位作者 谭熊 魏祥坡 《计算机工程》 CAS CSCD 北大核心 2018年第3期233-240,共8页
针对当前基于张量结构的特征提取方法不能充分利用高光谱影像多种光谱-空间特征的问题,提出一种融合光谱-空间多特征的高光谱影像张量特征提取方法。利用3D Gabor滤波器提取不同频率和方向的纹理特征,采用形态学属性滤波器提取不同属性... 针对当前基于张量结构的特征提取方法不能充分利用高光谱影像多种光谱-空间特征的问题,提出一种融合光谱-空间多特征的高光谱影像张量特征提取方法。利用3D Gabor滤波器提取不同频率和方向的纹理特征,采用形态学属性滤波器提取不同属性和尺度的形状特征,将高光谱影像光谱特征、纹理特征和形状特征结合为张量结构特征。在此基础上,利用局部张量判别分析方法增大同类特征张量之间的相似性以及异类张量间的差异性,得到融合多种空谱特征和判别信息的低维特征张量。使用Pavia University和Salinas影像数据集进行对比实验,结果表明,该方法能够有效保留影像空谱信息和类别间的判别信息,不仅可以提高分类精度,而且能够得到空间连续性更好的分类图。 展开更多
关键词 高光谱影像 光谱-空间特征 多特征 张量判别分析 特征提取
在线阅读 下载PDF
基于影响力社区检测与蚁群算法的特征选择 被引量:4
6
作者 叶小艳 叶小莺 周化 《计算机工程与设计》 北大核心 2019年第9期2684-2691,共8页
针对多变量特征选择算法计算效率低、冗余度高的问题,提出一种基于影响力社区检测与蚁群算法的特征选择算法。计算每对数据点之间的相似性,组成无向图,通过人工蚁群优化算法将网络划分为簇;使用社区检测算法对特征进行分类,选择冗余度... 针对多变量特征选择算法计算效率低、冗余度高的问题,提出一种基于影响力社区检测与蚁群算法的特征选择算法。计算每对数据点之间的相似性,组成无向图,通过人工蚁群优化算法将网络划分为簇;使用社区检测算法对特征进行分类,选择冗余度最小的特征子集;蚁群初始化阶段通过度量特征与类的相关性,初始化信息素。基于人工合成数据集与标准的公开数据集进行实验,实验结果表明,该算法实现了较高的分类准确率、敏感性、特异性,其计算效率处于可接受范围内。 展开更多
关键词 社区检测 特征选择 人工蚁群优化算法 多元判别分析 人工智能 数据分析
在线阅读 下载PDF
一种高效的人脸识别算法 被引量:1
7
作者 孙霞 王自强 《计算机工程》 CAS CSCD 北大核心 2011年第22期134-136,共3页
提出一种基于局部Fisher鉴别分析(LFDA)和优化支持向量机(SVM)的高效人脸识别算法。在综合考虑局部几何结构和类别信息的基础上,利用LFDA将高维人脸数据映射到低维特征空间,避免维数灾难问题。在该低维特征空间中,使用经乘性更新规则训... 提出一种基于局部Fisher鉴别分析(LFDA)和优化支持向量机(SVM)的高效人脸识别算法。在综合考虑局部几何结构和类别信息的基础上,利用LFDA将高维人脸数据映射到低维特征空间,避免维数灾难问题。在该低维特征空间中,使用经乘性更新规则训练的优化SVM对人脸数据进行分类识别。在人脸数据库上的实验结果表明,该算法的运算速度较快,识别准确率较高。 展开更多
关键词 人脸识别 局部Fisher鉴别分析 支持向量机 流形学习 特征提取 乘性更新规则
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部