The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By ...The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By constructing a novel switched Lyapunov-Krasovskii functional,a delay-dependent criterion for the unforced system to be regular,causal and uniformly asymptotically stable is established in terms of linear matrix inequalities(LMIs).An explicit expression for the desired memoryless state feedback stabilization controller is also given.The merits of the proposed criteria lie in their less conservativeness and relative simplicity,which are achieved by considering additionally useful terms(ignored in previous methods) when estimating the upper bound of the forward difference of the Lyapunov-Krasovskii functional and by avoiding utilizing any model augmentation transformation.Some numerical examples are provided to illustrate the validity of the proposed methods.展开更多
Stability analysis and stabilization for discrete-time singular delay systems are addressed,respectively.Firstly,a sufficient condition for regularity,causality and stability for discrete-time singular delay systems i...Stability analysis and stabilization for discrete-time singular delay systems are addressed,respectively.Firstly,a sufficient condition for regularity,causality and stability for discrete-time singular delay systems is derived.Then,by applying the skill of matrix theory,the state feedback controller is designed to guarantee the closed-loop discrete-time singular delay systems to be regular,casual and stable.Finally,numerical examples are given to demonstrate the effectiveness of the proposed method.展开更多
This article deals with the robust stability analysis and passivity of uncertain discrete-time Takagi- Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy model with parametric uncertainties can approximate n...This article deals with the robust stability analysis and passivity of uncertain discrete-time Takagi- Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy model with parametric uncertainties can approximate nonlinear uncertain systems at any precision. A sufficient condition on the existence of robust passive controller is established based on the Lyapunov stability theory. With the help of linear matrix inequality (LMI) method, robust passive controllers are designed so that the closed-loop system is robust stable and strictly passive. Furthermore, a convex optimization problem with LMI constraints is formulated to design robust passive controllers with the maximum dissipation rate. A numerical example illustrates the validity of the proposed method.展开更多
The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability condition...The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability conditions based on the linear matrix inequalities (LMIs). The stabilizing controller for this class of system is then designed and the solution of the desired controller can be obtained by a cone complementary linearization algorithm. Numerical examples are provided to illustrate the less conservativeness of the new stability and the validity of the controller design procedures.展开更多
The observer-based robust fault detection filter design and optimization for networked control systems (NOSs) with uncer- tain time-varying delays are addressed. The NCSs with uncertain time-varying delays are model...The observer-based robust fault detection filter design and optimization for networked control systems (NOSs) with uncer- tain time-varying delays are addressed. The NCSs with uncertain time-varying delays are modeled as parameter-uncertain systems by the matrix theory. Based on the model, an observer-based residual generator is constructed and the sufficient condition for the existence of the desired fault detection filter is derived in terms of the linear matrix inequality. Furthermore, a time domain opti- mization approach is proposed to improve the performance of the fault detection system. To prevent the false alarms, a new thresh- old function is established, and the solution of the optimization problem is given by using the singular value decomposition (SVD) of the matrix. A numerical example is provided to illustrate the effectiveness of the proposed approach.展开更多
Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is...Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is considered as the performance index of the closed-loop system. Sufficient conditions for the existence of guaranteed cost controllers via state feedback are given in terms of linear matrix inequalities (LMIs), and the design of an optimal guaranteed cost controller can be reduced to a convex optimization problem. It is shown that the designed controller not only guarantees the asymptotic stability of the closed-loop fuzzy descriptor delay system, but also provides an optimized upper bound of the guaranteed cost. At last, a numerical example is given to illustrate the effectiveness of the proposed method and the perfect performance of the optimal guaranteed cost controller.展开更多
The problem of delay-dependent exponential stability is investigated for impulsive stochastic systems with time-varying delay. Although the exponential stability of impulsive stochastic delay systems has been discusse...The problem of delay-dependent exponential stability is investigated for impulsive stochastic systems with time-varying delay. Although the exponential stability of impulsive stochastic delay systems has been discussed by several authors, few works have been done on delay-dependent exponential stability of impulsive stochastic delay systems. Firstly, the Lyapunov-Krasovskii functional method combing the free-weighting matrix approach is applied to investigate this problem. Some delay-dependent mean square exponential stability criteria are derived in terms of linear matrix inequalities. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive effects. The obtained results show that the system will stable if the impulses' frequency and amplitude are suitably related to the increase or decrease of the continuous flows, and impulses may be used as controllers to stabilize the underlying stochastic system. Numerical examples are given to show the effectiveness of the results.展开更多
The mean-square exponential stability problem is investigated for a class of stochastic time-varying delay systems with Markovian jumping parameters. By decomposing the delay interval into multiple equidistant subinte...The mean-square exponential stability problem is investigated for a class of stochastic time-varying delay systems with Markovian jumping parameters. By decomposing the delay interval into multiple equidistant subintervals, a new delay-dependent and decay-rate-dependent criterion is presented based on constructing a novel Lyapunov functional and employing stochastic analysis technique. Besides, the decay rate has no conventional constraint and can be selected according to different practical conditions. Finally, two numerical examples are provided to show that the obtained result has less conservatism than some existing ones in the literature.展开更多
The stability for a class of linear neutral systems with time-varying delays is studied in this paper, where delay in neutral-type term includes a fast-varying case (i.e., the derivative of delay is more than one), wh...The stability for a class of linear neutral systems with time-varying delays is studied in this paper, where delay in neutral-type term includes a fast-varying case (i.e., the derivative of delay is more than one), which has never been considered in current literature. The less conservative delaydependent stability criteria for this system are proposed by applying new Lyapunov-Krasovskii functional and novel polynomials with time-varying delay (PTVD) compensation technique. The aim to deal with systems with fast-varying neutral-type delay can be achieved by using the new functional. The benefit brought by applying the PTVD compensation technique is that some useful elements can be included in criteria, which are generally ignored when estimating the upper bound of derivative of Lyapunov-Krasovskii functional. A numerical example is provided to verify the effectiveness of the proposed results.展开更多
The problem of guaranteed cost control for the networked control systems(NCSs) with time-varying delays, time-varying sampling intervals and signals quantization was investigated, wherein the physical plant was contin...The problem of guaranteed cost control for the networked control systems(NCSs) with time-varying delays, time-varying sampling intervals and signals quantization was investigated, wherein the physical plant was continuous-time one, and the control input was discrete-time one. By using an input delay approach and a sector bound method, the network induced delays, quantization parameter and sampling intervals were presented in one framework in the case of the state and the control input by quantized in a logarithmic form. A novel Lyapunov function with discontinuity, which took full advantages of the NCS characteristic information, was exploited. In addition, it was shown that Lyapunov function decreased at the jump instants. Furthermore, the Leibniz-Newton formula and free-weighting matrix methods were used to obtain the guaranteed cost controller design conditions which were dependent on the NCS characteristic information. A numerical example was used to illustrate the effectiveness of the proposed methods.展开更多
This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A no...This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A novel scheme,viewing the interconnections with time-varying delays as effective information but not disturbances,is developed.Based on Lyapunov stability theory,using various techniques of decomposing and magnifying matrices,a design method of the non-fragile decentralized guaranteed cost controller for unperturbed neutral large-scale interconnected systems is proposed and the guaranteed cost is presented.The further results are derived for the uncertain case from the criterion of unperturbed neutral large-scale interconnected systems.Finally,an illustrative example shows that the results are significantly better than the existing results in the literatures.展开更多
A new method that stabilizes network-based systems with both bounded delay and packet disordering is discussed under the state feedback controller. A novel model, fully describing the dynamic characteristic of network...A new method that stabilizes network-based systems with both bounded delay and packet disordering is discussed under the state feedback controller. A novel model, fully describing the dynamic characteristic of network-based systems with packet disordering, is constructed. Different from the existing models of network-based systems, the number of delay items is time-varying in the model proposed. Further, this model is converted into a parameter-uncertain discrete-time system with time-varying delay item numbers in terms of matrix theory. Moreover, the less conservative stability condition is obtained by avoiding utilisation of Moon et al.’ inequality and bounding inequalities for quadratic functional terms. By solving a minization problem based on linear matrix inequalities, the state feedback controller is presented. A numerical example is given to illustrate the effectiveness of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China(6090402060835001)the Jiangsu Planned Projects for Postdoctoral Research Funds(0802010C)
文摘The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By constructing a novel switched Lyapunov-Krasovskii functional,a delay-dependent criterion for the unforced system to be regular,causal and uniformly asymptotically stable is established in terms of linear matrix inequalities(LMIs).An explicit expression for the desired memoryless state feedback stabilization controller is also given.The merits of the proposed criteria lie in their less conservativeness and relative simplicity,which are achieved by considering additionally useful terms(ignored in previous methods) when estimating the upper bound of the forward difference of the Lyapunov-Krasovskii functional and by avoiding utilizing any model augmentation transformation.Some numerical examples are provided to illustrate the validity of the proposed methods.
基金supported by the National Natural Science Foundation of China (6090400960974004)
文摘Stability analysis and stabilization for discrete-time singular delay systems are addressed,respectively.Firstly,a sufficient condition for regularity,causality and stability for discrete-time singular delay systems is derived.Then,by applying the skill of matrix theory,the state feedback controller is designed to guarantee the closed-loop discrete-time singular delay systems to be regular,casual and stable.Finally,numerical examples are given to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(60710002)Self-Planned Task of State Key Laboratory of Robotics and System(SKLRS200801A03).
文摘This article deals with the robust stability analysis and passivity of uncertain discrete-time Takagi- Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy model with parametric uncertainties can approximate nonlinear uncertain systems at any precision. A sufficient condition on the existence of robust passive controller is established based on the Lyapunov stability theory. With the help of linear matrix inequality (LMI) method, robust passive controllers are designed so that the closed-loop system is robust stable and strictly passive. Furthermore, a convex optimization problem with LMI constraints is formulated to design robust passive controllers with the maximum dissipation rate. A numerical example illustrates the validity of the proposed method.
基金the National Natural Science Foundation of China (69874008).
文摘The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability conditions based on the linear matrix inequalities (LMIs). The stabilizing controller for this class of system is then designed and the solution of the desired controller can be obtained by a cone complementary linearization algorithm. Numerical examples are provided to illustrate the less conservativeness of the new stability and the validity of the controller design procedures.
基金supported by the National Natural Science Foundation of China(6107402761273083)
文摘The observer-based robust fault detection filter design and optimization for networked control systems (NOSs) with uncer- tain time-varying delays are addressed. The NCSs with uncertain time-varying delays are modeled as parameter-uncertain systems by the matrix theory. Based on the model, an observer-based residual generator is constructed and the sufficient condition for the existence of the desired fault detection filter is derived in terms of the linear matrix inequality. Furthermore, a time domain opti- mization approach is proposed to improve the performance of the fault detection system. To prevent the false alarms, a new thresh- old function is established, and the solution of the optimization problem is given by using the singular value decomposition (SVD) of the matrix. A numerical example is provided to illustrate the effectiveness of the proposed approach.
基金the National Natural Science Foundation of China (60325311).
文摘Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is considered as the performance index of the closed-loop system. Sufficient conditions for the existence of guaranteed cost controllers via state feedback are given in terms of linear matrix inequalities (LMIs), and the design of an optimal guaranteed cost controller can be reduced to a convex optimization problem. It is shown that the designed controller not only guarantees the asymptotic stability of the closed-loop fuzzy descriptor delay system, but also provides an optimized upper bound of the guaranteed cost. At last, a numerical example is given to illustrate the effectiveness of the proposed method and the perfect performance of the optimal guaranteed cost controller.
基金supported by the National Natural Science Foundation of China (60874114)the Fundamental Research Funds for the Central Universities, South China University of Technology (SCUT)(2009ZM0140)
文摘The problem of delay-dependent exponential stability is investigated for impulsive stochastic systems with time-varying delay. Although the exponential stability of impulsive stochastic delay systems has been discussed by several authors, few works have been done on delay-dependent exponential stability of impulsive stochastic delay systems. Firstly, the Lyapunov-Krasovskii functional method combing the free-weighting matrix approach is applied to investigate this problem. Some delay-dependent mean square exponential stability criteria are derived in terms of linear matrix inequalities. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive effects. The obtained results show that the system will stable if the impulses' frequency and amplitude are suitably related to the increase or decrease of the continuous flows, and impulses may be used as controllers to stabilize the underlying stochastic system. Numerical examples are given to show the effectiveness of the results.
基金supported by the Program for New Century Excellent Talents in University, the Graduate Innovation Program of Jiangsu Province (CX06B-051Z)the Scientific Research Foundation of Graduate School of Southeast University (YBJJ0929)
文摘The mean-square exponential stability problem is investigated for a class of stochastic time-varying delay systems with Markovian jumping parameters. By decomposing the delay interval into multiple equidistant subintervals, a new delay-dependent and decay-rate-dependent criterion is presented based on constructing a novel Lyapunov functional and employing stochastic analysis technique. Besides, the decay rate has no conventional constraint and can be selected according to different practical conditions. Finally, two numerical examples are provided to show that the obtained result has less conservatism than some existing ones in the literature.
基金Supported by National Basic Research Program of China(973 Program)(2009CB320601)National Natural Science Foundation of China(50977008,60774048)the Program for Cheung Kong Scholars
文摘The stability for a class of linear neutral systems with time-varying delays is studied in this paper, where delay in neutral-type term includes a fast-varying case (i.e., the derivative of delay is more than one), which has never been considered in current literature. The less conservative delaydependent stability criteria for this system are proposed by applying new Lyapunov-Krasovskii functional and novel polynomials with time-varying delay (PTVD) compensation technique. The aim to deal with systems with fast-varying neutral-type delay can be achieved by using the new functional. The benefit brought by applying the PTVD compensation technique is that some useful elements can be included in criteria, which are generally ignored when estimating the upper bound of derivative of Lyapunov-Krasovskii functional. A numerical example is provided to verify the effectiveness of the proposed results.
基金Project(61104106) supported by the National Natural Science Foundation of ChinaProject(201202156) supported by the Natural Science Foundation of Liaoning Province,ChinaProject(LJQ2012100) supported by Program for Liaoning Excellent Talents in University(LNET)
文摘The problem of guaranteed cost control for the networked control systems(NCSs) with time-varying delays, time-varying sampling intervals and signals quantization was investigated, wherein the physical plant was continuous-time one, and the control input was discrete-time one. By using an input delay approach and a sector bound method, the network induced delays, quantization parameter and sampling intervals were presented in one framework in the case of the state and the control input by quantized in a logarithmic form. A novel Lyapunov function with discontinuity, which took full advantages of the NCS characteristic information, was exploited. In addition, it was shown that Lyapunov function decreased at the jump instants. Furthermore, the Leibniz-Newton formula and free-weighting matrix methods were used to obtain the guaranteed cost controller design conditions which were dependent on the NCS characteristic information. A numerical example was used to illustrate the effectiveness of the proposed methods.
基金supported by the National Natural Science Foundation of China(6057401160972164+1 种基金60904101)the Scientific Research Fund of Liaoning Provincial Education Department(2009A544)
文摘This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A novel scheme,viewing the interconnections with time-varying delays as effective information but not disturbances,is developed.Based on Lyapunov stability theory,using various techniques of decomposing and magnifying matrices,a design method of the non-fragile decentralized guaranteed cost controller for unperturbed neutral large-scale interconnected systems is proposed and the guaranteed cost is presented.The further results are derived for the uncertain case from the criterion of unperturbed neutral large-scale interconnected systems.Finally,an illustrative example shows that the results are significantly better than the existing results in the literatures.
基金supported by the National Natural Science Foundation of China (60874057 60725312+3 种基金 61074029)the Liaoning Provincal Foundation of Science and Technology (20082023)the Natural Science Foundation of Liaoning Province (20092083)China Postdoctoral Science Foundation Project (20100471488)
文摘A new method that stabilizes network-based systems with both bounded delay and packet disordering is discussed under the state feedback controller. A novel model, fully describing the dynamic characteristic of network-based systems with packet disordering, is constructed. Different from the existing models of network-based systems, the number of delay items is time-varying in the model proposed. Further, this model is converted into a parameter-uncertain discrete-time system with time-varying delay item numbers in terms of matrix theory. Moreover, the less conservative stability condition is obtained by avoiding utilisation of Moon et al.’ inequality and bounding inequalities for quadratic functional terms. By solving a minization problem based on linear matrix inequalities, the state feedback controller is presented. A numerical example is given to illustrate the effectiveness of the proposed method.