Pulse Doppler(PD) fuze is widely used in current battlefield. However, with the threat of repeater jamming, especially digital radio frequency memory technology, the deficiency in the anti-repeater jamming of a tradit...Pulse Doppler(PD) fuze is widely used in current battlefield. However, with the threat of repeater jamming, especially digital radio frequency memory technology, the deficiency in the anti-repeater jamming of a traditional PD fuze increasingly emerges. Therefore, a repeater jamming suppression method for a PD fuze based on identity(ID) recognition and chaotic encryption is proposed. Every fuze has its own ID which is encrypted with different chaotic binary sequences in every pulse period of the transmitted signal. The thumbtack-shaped ambiguity function shows a good resolution and distance cutoff characteristic. The ability of anti-repeater jamming is emphatically analyzed, and the results at different signal-to-noise ratio(SNR) show a strong anti-repeater jamming ability and range resolution that the proposed method possesses. Furthermore, the anti-repeater jamming ability is influenced by processing gain, bit error rate(BER) and correlation function. The simulation result validates the theoretical analysis, it shows the proposed method can significantly improve the anti-repeater jamming ability of a PD fuze.展开更多
A new chaotic image encryption scheme based on permutation and substitution in the Fourier domain is presented.Fractional Fourier Transform(FRFT)is used before the encryption scheme to get a large degree of randomizat...A new chaotic image encryption scheme based on permutation and substitution in the Fourier domain is presented.Fractional Fourier Transform(FRFT)is used before the encryption scheme to get a large degree of randomization.The permutation is achieved by Baker map and the substitution by a key-related-to-plain-image algorithm based on the modified Logistic map.Modification of the Logistic map is developed to increase the space of the encryption key,and hence increase the security.The key of the encryption algorithm dependents on the plain image,and thus,the cipher image is sensitive to both the initial key and the plain image to resist known-plaintext and chosen plaintext attacks.The key space is large and hence the algorithm can effectively resist brute-force attacks.The proposed scheme is examined using different performance evaluation metrics and the results prove that the proposed scheme is highly secure,and it can effectively resist different attacks.展开更多
In this paper,we first propose a memristive chaotic system and implement it by circuit simulation.The chaotic dynamics and various attractors are analysed by using phase portrait,bifurcation diagram,and Lyapunov expon...In this paper,we first propose a memristive chaotic system and implement it by circuit simulation.The chaotic dynamics and various attractors are analysed by using phase portrait,bifurcation diagram,and Lyapunov exponents.In particular,the system has robust chaos in a wide parameter range and the initial value space,which is favourable to the security communication application.Consequently,we further explore its application in image encryption and present a new scheme.Before image processing,the external key is protected by the Grain-128a algorithm and the initial values of the memristive system are updated with the plain image.We not only perform random pixel extraction and masking with the chaotic cipher,but also use them as control parameters for Brownian motion to obtain the permutation matrix.In addition,multiplication on the finite field GF(2^(8))is added to further enhance the cryptography.Finally,the simulation results verify that the proposed image encryption scheme has better performance and higher security,which can effectively resist various attacks.展开更多
The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article propose...The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article proposes a recognition method for RFPSs to identify the false targets caused by ISRJ.The proposed method is realized by assigning a unique identity(ID)to each RFPS,and each ID is a periodically and chaotically encrypted in every pulse period.The processing technique of the received signal is divided into ranging and ID decryption.In the ranging part,a high-resolution range profile(HRRP)can be obtained by performing pulse compression with the binary chaotic sequences.To suppress the noise,the singular value decomposition(SVD)is applied in the preprocessing.Regarding ID decryption,targets and ISRJ can be recognized through the encryption and decryption processes,which are controlled by random keys.An adaptability analysis conducted in terms of the peak-to-side lobe ratio(PSLR)and bit error rate(BER)indicates that the proposed method performs well within a 70-k Hz Doppler shift.A simulation and experimental results show that the proposed method achieves extremely stable target and ISRJ recognition accuracies at different signal-to-noise ratios(SNRs)and jamming-to-signal ratios(JSRs).展开更多
近年来,医疗数据泄露频发,严重威胁患者隐私与健康安全,亟需有效的解决方案以保护医疗数据在传输过程中的隐私与安全性。该文提出了一种基于双忆阻类脑混沌神经网络的医疗物联网(Internet of Medical Things,IoMT)数据隐私保护方法,以...近年来,医疗数据泄露频发,严重威胁患者隐私与健康安全,亟需有效的解决方案以保护医疗数据在传输过程中的隐私与安全性。该文提出了一种基于双忆阻类脑混沌神经网络的医疗物联网(Internet of Medical Things,IoMT)数据隐私保护方法,以应对这一挑战。首先,利用忆阻器的突触仿生特性,构建了一种基于Hopfield神经网络的双忆阻类脑混沌神经网络模型,并通过分岔图、Lyapunov指数谱、相图、时域图及吸引盆等非线性动力学工具,深入揭示了模型的复杂混沌动力学特性。研究结果表明,该网络不仅展现出复杂的网格多结构混沌吸引子特性,还具有平面初值位移调控能力,从而显著增强了其密码学应用潜力。为了验证其实用性与可靠性,基于微控制器单元(MCU)搭建了硬件平台,并通过硬件实验进一步确认了模型的复杂动力学行为。基于此模型,该文设计了一种结合双忆阻类脑混沌神经网络复杂混沌特性的高效IoMT数据隐私保护方法。在此基础上,对彩色医疗图像数据的加密效果进行了全面的安全性分析。实验结果表明,该方法在关键性能指标上表现优异,包括大密钥空间、低像素相关性、高密钥敏感性,以及对噪声与数据丢失攻击的强鲁棒性。该研究为IoMT环境下的医疗数据隐私保护提供了一种创新且有效的解决方案,为未来的智能医疗安全技术发展奠定了坚实基础。展开更多
基金National Natural Science Foundation of China under Grant No. 61973037 and No. 61673066。
文摘Pulse Doppler(PD) fuze is widely used in current battlefield. However, with the threat of repeater jamming, especially digital radio frequency memory technology, the deficiency in the anti-repeater jamming of a traditional PD fuze increasingly emerges. Therefore, a repeater jamming suppression method for a PD fuze based on identity(ID) recognition and chaotic encryption is proposed. Every fuze has its own ID which is encrypted with different chaotic binary sequences in every pulse period of the transmitted signal. The thumbtack-shaped ambiguity function shows a good resolution and distance cutoff characteristic. The ability of anti-repeater jamming is emphatically analyzed, and the results at different signal-to-noise ratio(SNR) show a strong anti-repeater jamming ability and range resolution that the proposed method possesses. Furthermore, the anti-repeater jamming ability is influenced by processing gain, bit error rate(BER) and correlation function. The simulation result validates the theoretical analysis, it shows the proposed method can significantly improve the anti-repeater jamming ability of a PD fuze.
文摘A new chaotic image encryption scheme based on permutation and substitution in the Fourier domain is presented.Fractional Fourier Transform(FRFT)is used before the encryption scheme to get a large degree of randomization.The permutation is achieved by Baker map and the substitution by a key-related-to-plain-image algorithm based on the modified Logistic map.Modification of the Logistic map is developed to increase the space of the encryption key,and hence increase the security.The key of the encryption algorithm dependents on the plain image,and thus,the cipher image is sensitive to both the initial key and the plain image to resist known-plaintext and chosen plaintext attacks.The key space is large and hence the algorithm can effectively resist brute-force attacks.The proposed scheme is examined using different performance evaluation metrics and the results prove that the proposed scheme is highly secure,and it can effectively resist different attacks.
基金This work was supported by the National Natural Science Foundation of China(61203004)the Natural Science Foundation of Heilongjiang Province(F201220)the Heilongjiang Provincial Natural Science Foundation of Joint Guidance Project(LH2020F022).
文摘In this paper,we first propose a memristive chaotic system and implement it by circuit simulation.The chaotic dynamics and various attractors are analysed by using phase portrait,bifurcation diagram,and Lyapunov exponents.In particular,the system has robust chaos in a wide parameter range and the initial value space,which is favourable to the security communication application.Consequently,we further explore its application in image encryption and present a new scheme.Before image processing,the external key is protected by the Grain-128a algorithm and the initial values of the memristive system are updated with the plain image.We not only perform random pixel extraction and masking with the chaotic cipher,but also use them as control parameters for Brownian motion to obtain the permutation matrix.In addition,multiplication on the finite field GF(2^(8))is added to further enhance the cryptography.Finally,the simulation results verify that the proposed image encryption scheme has better performance and higher security,which can effectively resist various attacks.
基金supported by the National Natural Science Foundation of China(Grant No.61973037)and(Grant No.61871414)Postdoctoral Fundation of China(Grant No.2022M720419)。
文摘The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article proposes a recognition method for RFPSs to identify the false targets caused by ISRJ.The proposed method is realized by assigning a unique identity(ID)to each RFPS,and each ID is a periodically and chaotically encrypted in every pulse period.The processing technique of the received signal is divided into ranging and ID decryption.In the ranging part,a high-resolution range profile(HRRP)can be obtained by performing pulse compression with the binary chaotic sequences.To suppress the noise,the singular value decomposition(SVD)is applied in the preprocessing.Regarding ID decryption,targets and ISRJ can be recognized through the encryption and decryption processes,which are controlled by random keys.An adaptability analysis conducted in terms of the peak-to-side lobe ratio(PSLR)and bit error rate(BER)indicates that the proposed method performs well within a 70-k Hz Doppler shift.A simulation and experimental results show that the proposed method achieves extremely stable target and ISRJ recognition accuracies at different signal-to-noise ratios(SNRs)and jamming-to-signal ratios(JSRs).
文摘近年来,医疗数据泄露频发,严重威胁患者隐私与健康安全,亟需有效的解决方案以保护医疗数据在传输过程中的隐私与安全性。该文提出了一种基于双忆阻类脑混沌神经网络的医疗物联网(Internet of Medical Things,IoMT)数据隐私保护方法,以应对这一挑战。首先,利用忆阻器的突触仿生特性,构建了一种基于Hopfield神经网络的双忆阻类脑混沌神经网络模型,并通过分岔图、Lyapunov指数谱、相图、时域图及吸引盆等非线性动力学工具,深入揭示了模型的复杂混沌动力学特性。研究结果表明,该网络不仅展现出复杂的网格多结构混沌吸引子特性,还具有平面初值位移调控能力,从而显著增强了其密码学应用潜力。为了验证其实用性与可靠性,基于微控制器单元(MCU)搭建了硬件平台,并通过硬件实验进一步确认了模型的复杂动力学行为。基于此模型,该文设计了一种结合双忆阻类脑混沌神经网络复杂混沌特性的高效IoMT数据隐私保护方法。在此基础上,对彩色医疗图像数据的加密效果进行了全面的安全性分析。实验结果表明,该方法在关键性能指标上表现优异,包括大密钥空间、低像素相关性、高密钥敏感性,以及对噪声与数据丢失攻击的强鲁棒性。该研究为IoMT环境下的医疗数据隐私保护提供了一种创新且有效的解决方案,为未来的智能医疗安全技术发展奠定了坚实基础。