期刊文献+
共找到300篇文章
< 1 2 15 >
每页显示 20 50 100
Attractors and the attraction basins of discrete-time cellular neural networks
1
作者 MaRunnian XiYoumin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期204-208,共5页
The dynamic behavior of discrete-time cellular neural networks(DTCNN), which is strict with zero threshold value, is mainly studied in asynchronous mode and in synchronous mode. In general, a k-attractor of DTCNN is n... The dynamic behavior of discrete-time cellular neural networks(DTCNN), which is strict with zero threshold value, is mainly studied in asynchronous mode and in synchronous mode. In general, a k-attractor of DTCNN is not a convergent point. But in this paper, it is proved that a k-attractor is a convergent point if the strict DTCNN satisfies some conditions. The attraction basin of the strict DTCNN is studied, one example is given to illustrate the previous conclusions to be wrong, and several results are presented. The obtained results on k-attractor and attraction basin not only correct the previous results, but also provide a theoretical foundation of performance analysis and new applications of the DTCNN. 展开更多
关键词 discrete-time cellular neural networks convergent point k-attractor attraction basin.
在线阅读 下载PDF
Adaptive learning with guaranteed stability for discrete-time recurrent neural networks 被引量:1
2
作者 邓华 吴义虎 段吉安 《Journal of Central South University of Technology》 EI 2007年第5期685-689,共5页
To avoid unstable learning, a stable adaptive learning algorithm was proposed for discrete-time recurrent neural networks. Unlike the dynamic gradient methods, such as the backpropagation through time and the real tim... To avoid unstable learning, a stable adaptive learning algorithm was proposed for discrete-time recurrent neural networks. Unlike the dynamic gradient methods, such as the backpropagation through time and the real time recurrent learning, the weights of the recurrent neural networks were updated online in terms of Lyapunov stability theory in the proposed learning algorithm, so the learning stability was guaranteed. With the inversion of the activation function of the recurrent neural networks, the proposed learning algorithm can be easily implemented for solving varying nonlinear adaptive learning problems and fast convergence of the adaptive learning process can be achieved. Simulation experiments in pattern recognition show that only 5 iterations are needed for the storage of a 15×15 binary image pattern and only 9 iterations are needed for the perfect realization of an analog vector by an equilibrium state with the proposed learning algorithm. 展开更多
关键词 recurrent neural networks adaptive learning nonlinear discrete-time systems pattern recognition
在线阅读 下载PDF
Improved results on passivity analysis of discrete-time stochastic neural networks with time-varying delay
3
作者 于建江 张侃健 费树岷 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第S1期63-67,共5页
The problem of passivity analysis for a class of discrete-time stochastic neural networks (DSNNs) with time-varying interval delay was investigated. The delay-dependent sufficient criteria were derived in terms of lin... The problem of passivity analysis for a class of discrete-time stochastic neural networks (DSNNs) with time-varying interval delay was investigated. The delay-dependent sufficient criteria were derived in terms of linear matrix inequalities (LMIs). The results are shown to be generalization of some previous results and are less conservative than the existing works. Meanwhile, the computational complexity of the obtained stability conditions is reduced because less variables are involved. A numerical example is given to show the effectiveness and the benefits of the proposed method. 展开更多
关键词 PASSIVITY discrete-time stochastic neural networks (DSNNs) INTERVAL delay linear matrix INEQUALITIES (LMIs)
在线阅读 下载PDF
Stability analysis of extended discrete-time BAMneural networks based on LMI approach
4
作者 刘妹琴 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期588-594,共7页
We propose a new approach for analyzing the global asymptotic stability of the extended discrete-time bidirectional associative memory (BAM) neural networks. By using the Euler rule, we discretize the continuous-tim... We propose a new approach for analyzing the global asymptotic stability of the extended discrete-time bidirectional associative memory (BAM) neural networks. By using the Euler rule, we discretize the continuous-time BAM neural networks as the extended discrete-time BAM neural networks with non-threshold activation functions. Here we present some conditions under which the neural networks have unique equilibrium points. To judge the global asymptotic stability of the equilibrium points, we introduce a new neural network model - standard neural network model (SNNM). For the SNNMs, we derive the sufficient conditions for the global asymptotic stability of the equilibrium points, which are formulated as some linear matrix inequalities (LMIs). We transform the discrete-time BAM into the SNNM and apply the general result about the SNNM to the determination of global asymptotic stability of the discrete-time BAM. The approach proposed extends the known stability results, has lower conservativeness, can be verified easily, and can also be applied to other forms of recurrent neural networks. 展开更多
关键词 standard neural network model bidirectional associative memory discrete-time linear matrix inequality global asymptotic stability.
在线阅读 下载PDF
Design of multilayer cellular neural network based on memristor crossbar and its application to edge detection 被引量:4
5
作者 YU Yongbin TANG Haowen +2 位作者 FENG Xiao WANG Xiangxiang HUANG Hang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第3期641-649,共9页
Memristor with memory properties can be applied to connection points(synapses)between cells in a cellular neural network(CNN).This paper highlights memristor crossbar-based multilayer CNN(MCM-CNN)and its application t... Memristor with memory properties can be applied to connection points(synapses)between cells in a cellular neural network(CNN).This paper highlights memristor crossbar-based multilayer CNN(MCM-CNN)and its application to edge detection.An MCM-CNN is designed by adopting a memristor crossbar composed of a pair of memristors.MCM-CNN based on the memristor crossbar with changeable weight is suitable for edge detection of a binary image and a color image considering its characteristics of programmablization and compactation.Figure of merit(FOM)is introduced to evaluate the proposed structure and several traditional edge detection operators for edge detection results.Experiment results show that the FOM of MCM-CNN is three times more than that of the traditional edge detection operators. 展开更多
关键词 edge detection figure of merit(FOM) memristor crossbar synaptic circuit memristor crossbar-based cellular neural network(MCM-CNN)
在线阅读 下载PDF
Exponential stability for cellular neural networks: an LMI approach 被引量:1
6
作者 Liu Deyou Zhang Jianhua Guan Xinping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期68-71,共4页
A new sufficient conditions for the global exponential stability of the equilibrium point for delayed cellular neural networks (DCNNs) is presented. It is shown that the use of a more general type of Lyapunov-Krasov... A new sufficient conditions for the global exponential stability of the equilibrium point for delayed cellular neural networks (DCNNs) is presented. It is shown that the use of a more general type of Lyapunov-Krasovskii function enables the derivation of new results for an exponential stability of the equilibrium point for DCNNs. The results establish a relation between the delay time and the parameters of the network. The results are also compared with one of the most recent results derived in the literature. 展开更多
关键词 Delayed cellular neural networks LMI neural networks Exponential stability
在线阅读 下载PDF
Global exponential stability for delayed cellular neural networks and estimate of exponential convergence rate 被引量:1
7
作者 张强 马润年 许进 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第3期344-349,共6页
Some sufficient conditions for the global exponential stability and lower bounds on the rate of exponential convergence of the cellular neural networks with delay (DCNNs) are obtained by means of a method based on del... Some sufficient conditions for the global exponential stability and lower bounds on the rate of exponential convergence of the cellular neural networks with delay (DCNNs) are obtained by means of a method based on delay differential inequality. The method, which does not make use of any Lyapunov functional, is simple and valid for the stability analysis of neural networks with delay. Some previously established results in this paper are shown to be special casses of the presented result. 展开更多
关键词 global exponential stability convergence rate cellular neural networks with delay delay differential inequality.
在线阅读 下载PDF
Anti-windup compensation design for a class of distributed time-delayed cellular neural networks 被引量:1
8
作者 HE Hanlin ZHAMiao BIAN Shaofeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1212-1223,共12页
Both time-delays and anti-windup(AW)problems are conventional problems in system design,which are scarcely discussed in cellular neural networks(CNNs).This paper discusses stabilization for a class of distributed time... Both time-delays and anti-windup(AW)problems are conventional problems in system design,which are scarcely discussed in cellular neural networks(CNNs).This paper discusses stabilization for a class of distributed time-delayed CNNs with input saturation.Based on the Lyapunov theory and the Schur complement principle,a bilinear matrix inequality(BMI)criterion is designed to stabilize the system with input saturation.By matrix congruent transformation,the BMI control criterion can be changed into linear matrix inequality(LMI)criterion,then it can be easily solved by the computer.It is a one-step AW strategy that the feedback compensator and the AW compensator can be determined simultaneously.The attraction domain and its optimization are also discussed.The structure of CNNs with both constant timedelays and distribute time-delays is more general.This method is simple and systematic,allowing dealing with a large class of such systems whose excitation satisfies the Lipschitz condition.The simulation results verify the effectiveness and feasibility of the proposed method. 展开更多
关键词 anti-windup(AW) cellular neural networks(CNNs) Lyapunov theory linear matrix inequality(LMI) attraction domain.
在线阅读 下载PDF
Stability analysis of cellular neural networks with time-varying delay
9
作者 Wang Xingang1,4, Zhang Dongmei2 & Liu Jun3 1. Coll. of Information Engineering, Zhejiang Univ. of Technology, Hangzhou 310032, P. R. China 2. Coll. of Science, Zhejiang Univ. of Technology, Hangzhou 310032, P. R. China +1 位作者 3. Coll. of Science, Beihua Univ., Jilin 132000, P. R. China 4. School of Computer Engineering and Science, Shanghai Univ., Shanghai 200072, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期266-273,共8页
The global asymptotic stability of cellular neural networks with delays is investigated. Three kinds of time delays have been considered. New delay-dependent stability criteria are proposed and are formulated as the f... The global asymptotic stability of cellular neural networks with delays is investigated. Three kinds of time delays have been considered. New delay-dependent stability criteria are proposed and are formulated as the feasibility of some linear matrix inequalities, which can be checked easily by resorting to the recently developed interior-point algorithms. Based on the Finsler Lemma, it is theoretically proved that the proposed stability criteria are less conservative than some existing results. 展开更多
关键词 cellular neural networks time-varying delay integral inequality
在线阅读 下载PDF
Rapid urban flood forecasting based on cellular automata and deep learning
10
作者 BAI Bing DONG Fei +1 位作者 LI Chuanqi WANG Wei 《水利水电技术(中英文)》 北大核心 2024年第12期17-28,共12页
[Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-d... [Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-dimensional hydrodynamic models execute calculations slowly,hindering the rapid simulation and forecasting of urban floods.To overcome this limitation and accelerate the speed and improve the accuracy of urban flood simulations and forecasting,numerical simulations and deep learning were combined to develop a more effective urban flood forecasting method.[Methods]Specifically,a cellular automata model was used to simulate the urban flood process and address the need to include a large number of datasets in the deep learning process.Meanwhile,to shorten the time required for urban flood forecasting,a convolutional neural network model was used to establish the mapping relationship between rainfall and inundation depth.[Results]The results show that the relative error of forecasting the maximum inundation depth in flood-prone locations is less than 10%,and the Nash efficiency coefficient of forecasting inundation depth series in flood-prone locations is greater than 0.75.[Conclusion]The result demonstrated that the proposed method could execute highly accurate simulations and quickly produce forecasts,illustrating its superiority as an urban flood forecasting technique. 展开更多
关键词 urban flooding flood-prone location cellular automata deep learning convolutional neural network rapid forecasting
在线阅读 下载PDF
基于图卷积神经网络的分解可解释性的蜂窝网络流量预测模型
11
作者 张子天 温之馨 +3 位作者 诸葛斌 吕智豪 董黎刚 蒋献 《电信科学》 北大核心 2025年第9期93-107,共15页
随着智能互联应用在城市场景中的普及,城市网络流量的激增带来了新挑战。基站蜂窝网络中的流量预测是资源分配与调度等关键应用的核心,准确预测蜂窝流量对于高效分配网络资源尤为重要。然而在蜂窝网络流量预测研究中,复杂的城市蜂窝流... 随着智能互联应用在城市场景中的普及,城市网络流量的激增带来了新挑战。基站蜂窝网络中的流量预测是资源分配与调度等关键应用的核心,准确预测蜂窝流量对于高效分配网络资源尤为重要。然而在蜂窝网络流量预测研究中,复杂的城市蜂窝流量往往有着深层次的时间和空间特征需要挖掘,为了解决这个问题,提出一个基于图卷积神经网络的分解可解释性时空图卷积神经网络(DISTGCN)。该神经网络利用蜂窝网络流量分解以及时空相关性,提高了流量预测的准确性,同时分解后的流量特征增强了预测结果的可解释性。在真实的经典数据集上的实验结果表明,DISTGCN的预测性能优于传统深度学习预测模型和图神经网络模型。 展开更多
关键词 蜂窝流量预测 图神经网络 流量分解 可解释性 深度学习
在线阅读 下载PDF
基于深度强化学习的多用户蜂窝网络能效优化
12
作者 徐钰龙 李君 +1 位作者 李正权 高伟栋 《计算机工程与设计》 北大核心 2025年第3期734-740,共7页
针对多用户蜂窝网络中能量效率的重要性以及传统优化算法的局限性和泛化性能差的问题,提出一种基于深度强化学习的EEO-Dueling DQN算法,旨在满足约束发射功率条件下实现整个网络的能量效率最大化。Dueling DQN采用竞争网络优化神经网络... 针对多用户蜂窝网络中能量效率的重要性以及传统优化算法的局限性和泛化性能差的问题,提出一种基于深度强化学习的EEO-Dueling DQN算法,旨在满足约束发射功率条件下实现整个网络的能量效率最大化。Dueling DQN采用竞争网络优化神经网络结构解决DQN中出现的高估问题。仿真结果表明,该算法获得的平均能量效率比DQN算法高出65%,在收敛情况和稳定性方面也有较好表现,具有较强泛化能力,可适用于实际中不同通信场景。 展开更多
关键词 多用户 蜂窝网络 深度强化学习 神经网络 竞争网络 能量效率 泛化性能
在线阅读 下载PDF
一类比例时滞细胞神经网络ω-周期解的全局多项式稳定性
13
作者 韩佳澎 周立群 《天津师范大学学报(自然科学版)》 北大核心 2025年第1期1-6,共6页
研究一类比例时滞细胞神经网络ω-周期解的全局多项式稳定性.首先通过M-矩阵理论并构造辅助函数建立微分不等式,然后利用该时滞微分不等式和压缩映射定理,得到了所研究系统ω-周期解的时滞独立和时滞依赖的全局多项式稳定的判定准则.当... 研究一类比例时滞细胞神经网络ω-周期解的全局多项式稳定性.首先通过M-矩阵理论并构造辅助函数建立微分不等式,然后利用该时滞微分不等式和压缩映射定理,得到了所研究系统ω-周期解的时滞独立和时滞依赖的全局多项式稳定的判定准则.当外部输入为常数时,得到了相应系统平衡点的全局多项式稳定的判定准则.最后通过2个数值算例及其仿真验证了所得结果的正确性. 展开更多
关键词 比例时滞 细胞神经网络 周期解 全局多项式稳定性
在线阅读 下载PDF
基于二次分解的混合神经网络蜂窝流量预测
14
作者 段阿敏 张朝辉 《系统工程与电子技术》 北大核心 2025年第5期1687-1697,共11页
在移动通信网络快速发展的背景下,蜂窝流量预测对于网络规划、优化和资源管理具有重大意义。针对蜂窝流量数据的复杂性和非线性特点,提出一种基于二次分解的混合神经网络蜂窝流量预测方法。首先,采用自适应噪声的完备集合经验模式分解(c... 在移动通信网络快速发展的背景下,蜂窝流量预测对于网络规划、优化和资源管理具有重大意义。针对蜂窝流量数据的复杂性和非线性特点,提出一种基于二次分解的混合神经网络蜂窝流量预测方法。首先,采用自适应噪声的完备集合经验模式分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法将原始流量分解为多个子序列,利用K-Shape聚类算法重构为频率序列和趋势序列。为了更细致地揭示数据的内在结构,运用变分模态分解(variational mode decomposition,VMD)方法对频率序列进行二次分解,生成多维频率序列。然后,将一维趋势序列和多维频率序列分别输入至局部特征提取模块,其中单通道特征提取层利用一维卷积神经网络(one-dimensional convolution neural network,1DCNN)提取一维趋势序列的局部特征,而多通道特征提取层则结合卷积块注意力模块(convolutional block attention module,CBAM)捕捉多维频率序列中的关键信息。紧接着将提取到的特征向量分别输入到时序信息学习模块中,利用双向长短时记忆(bidirectional long short term memory,BiLSTM)网络和注意力机制学习时序变化规律,完成预测流量的输出。最后,通过对趋势序列和频率序列的预测结果求和,实现对蜂窝流量的准确预测。为了验证所提方法的有效性,利用公开数据集进行实验验证,并与多种不同方法进行对比。实验结果表明,所提预测方法展现出更优的预测性能,为蜂窝网络的智能管理和优化提供了有力支持。 展开更多
关键词 蜂窝流量预测 模态分解 卷积神经网络 双向长短时记忆网络 卷积块注意力模块
在线阅读 下载PDF
忆阻耦合异构忆阻细胞神经网络的多稳态与相位同步研究 被引量:2
15
作者 武花干 边逸轩 +1 位作者 陈墨 徐权 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第9期3818-3826,共9页
忆阻具有天然的可塑性,可实现与生物神经元和突触所具有的相似或相同机制的硅基神经元和纳米突触。将忆阻用作突触耦合两个异构的忆阻细胞神经网络,该文构建了一个忆阻耦合异构忆阻细胞神经网络。该耦合网络含有一个与忆阻突触初值条件... 忆阻具有天然的可塑性,可实现与生物神经元和突触所具有的相似或相同机制的硅基神经元和纳米突触。将忆阻用作突触耦合两个异构的忆阻细胞神经网络,该文构建了一个忆阻耦合异构忆阻细胞神经网络。该耦合网络含有一个与忆阻突触初值条件和子网初值条件相关的空间平衡点集,可呈现出复杂的动力学演化。利用数值仿真方法,揭示了耦合网络依赖于初值条件而存在的稳定点、周期、混沌、超混沌以及无界振荡等多稳态行为。此外,在忆阻突触的调控下,两个异构子网可达成相位同步。最后,基于STM32单片机硬件平台完成了电路实验验证。 展开更多
关键词 忆阻 细胞神经网络 异构网络 多稳态 相位同步
在线阅读 下载PDF
移动机器人全覆盖路径的BINN-元胞自动机规划
16
作者 朱方园 《机械设计与制造》 北大核心 2024年第8期346-349,共4页
为了实现机器人对工作区域的全覆盖,提出了基于生物激励神经网络-元胞自动机系统的全覆盖路径规划方法。介绍了生物激励神经网络算法的基本原理,分析了该算法在机器人陷入死区时无法逃逸的问题。基于元胞自动机系统设计了机器人逃逸机制... 为了实现机器人对工作区域的全覆盖,提出了基于生物激励神经网络-元胞自动机系统的全覆盖路径规划方法。介绍了生物激励神经网络算法的基本原理,分析了该算法在机器人陷入死区时无法逃逸的问题。基于元胞自动机系统设计了机器人逃逸机制,包括逃逸点的确定和逃逸路径的规划方法。在仿真环境下,将元胞系统逃逸机制与基本RRT、文献[10]的BINN-RRT逃逸机制进行对比,结果表明元胞系统逃逸机制的规划时间比基本RRT小2个数量级,比BINN-RRT小1个数量级,且逃逸路径短于另外两种方法,验证了元胞系统逃逸机制的有效性和优越性。基于BINN和元胞系统的全覆盖路径比BINN-RRT规划路径更加平滑,验证了全覆盖方法的优越性和有效性。 展开更多
关键词 移动机器人 全覆盖路径规划 生物激励神经网络 元胞自动机系统 逃逸机制
在线阅读 下载PDF
基于轻量化卷积神经网络的蜂窝流量低复杂度预测方法 被引量:1
17
作者 郑淞之 张兴 +2 位作者 张妍 王兴瑜 袁国翔 《无线电通信技术》 北大核心 2024年第5期921-931,共11页
随着蜂窝网络数据流量需求的高速增长,对于未来时刻蜂窝流量情况的精准预测,可以帮助改善网络资源分配、实现流量负载均衡,并部署基站节能与休眠策略。基于轻量化线性瓶颈结构,提出了一个具有多个并列分支结构的空时预测模型,分别提取... 随着蜂窝网络数据流量需求的高速增长,对于未来时刻蜂窝流量情况的精准预测,可以帮助改善网络资源分配、实现流量负载均衡,并部署基站节能与休眠策略。基于轻量化线性瓶颈结构,提出了一个具有多个并列分支结构的空时预测模型,分别提取近期历史数据和周期性历史数据中的空时特征。对于网格化空时数据中的空间依赖性,额外通过K-Means算法对网格高维特征进行聚类,并提取网格基站密度信息作为跨域特征输入到模型中,实现了使用低复杂度、低算力需求模型对研究范围全域流量的精准预测。 展开更多
关键词 空时流量预测 轻量化模型 卷积神经网络 深度学习 蜂窝网络
在线阅读 下载PDF
元胞自动机模型的尺度敏感性分析 被引量:11
18
作者 王羊 高阳 +2 位作者 赵琳 赵志强 李双成 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第4期750-758,共9页
以深圳市龙华镇为案例区,构建了土地利用/覆被变化的元胞自动机模型,从时间和空间两个方面定量研究了LUCC模型的尺度效应。通过改变模型输入数据的空间分辨率和模型模拟的时间长度,探讨了尺度对土地利用变化模型的影响。分别采用龙华镇1... 以深圳市龙华镇为案例区,构建了土地利用/覆被变化的元胞自动机模型,从时间和空间两个方面定量研究了LUCC模型的尺度效应。通过改变模型输入数据的空间分辨率和模型模拟的时间长度,探讨了尺度对土地利用变化模型的影响。分别采用龙华镇1990年30,60,90,120,150,180,210和240 m空间分辨率的土地利用数据作为元胞自动机模型的输入,模拟研究区1995年和2000年的土地利用变化状况以诠释CA模型内在的尺度依赖特征,并依据模型的点对点模拟精度、Kappa系数、实际变化元胞的模拟精度3个指标评价了该模型的尺度敏感性,最后分析了CA模型尺度敏感性的来源。结果表明:空间尺度上,元胞的空间分辨率越高,模型的模拟精度越高,时间尺度上,模型模拟的实际时间跨度越长,精度越高;孤立元胞的路径依赖是CA模型空间尺度敏感性的重要来源;特定地理过程在不同时间段的发展规律是CA模型时间尺度敏感性的重要来源。研究结果对元胞自动机的尺度选择具有重要意义。 展开更多
关键词 元胞自动机 LUCC 尺度 敏感性 人工神经网络 深圳
在线阅读 下载PDF
基于边缘检测与双边滤波的彩色图像去噪 被引量:39
19
作者 张闯 迟健男 +1 位作者 张朝晖 王志良 《电子学报》 EI CAS CSCD 北大核心 2010年第8期1776-1783,共8页
针对彩色图像双边滤波去噪方法存在的不足,本文提出一种边缘检测与双边滤波相结合的彩色图像去噪方法.首先利用细胞神经网络(CNN)模型导出一种新的彩色图像分块自适应边缘检测算法,继承了CNN灰度边缘检测算法定位准确的优点,又弥补了CN... 针对彩色图像双边滤波去噪方法存在的不足,本文提出一种边缘检测与双边滤波相结合的彩色图像去噪方法.首先利用细胞神经网络(CNN)模型导出一种新的彩色图像分块自适应边缘检测算法,继承了CNN灰度边缘检测算法定位准确的优点,又弥补了CNN现有算法不能直接处理彩色图像的空白.接下来提出一种针对图像增强的边缘滤波算法,通过两级边缘检测满足去噪不同阶段对边缘检测的不同要求.在此基础上,用改进的双边滤波器对彩色图像进行去噪,通过非抗噪边缘图对噪声范围进行定位,以缩小双边滤波的范围,减少去噪过程带来的图像模糊,并且对双边滤波加权平均方式进行改进,减小噪声点本身的权重,降低高频噪声的影响.最后根据滤波后的去噪边缘图对彩色图像进行增强.实验结果表明,文中方法在有效去除噪声的同时保护和增强了图像中的边缘. 展开更多
关键词 边缘检测 双边滤波 彩色图像 边缘滤波 去噪 细胞神经网络(CNN)
在线阅读 下载PDF
基于径向基函数神经网络的电网模糊元胞故障诊断 被引量:54
20
作者 熊国江 石东源 +1 位作者 朱林 陈祥文 《电力系统自动化》 EI CSCD 北大核心 2014年第5期59-65,共7页
提出了基于径向基函数神经网络的电网模糊元胞故障诊断方法,旨在有效解决神经网络应用于电网故障诊断所面临的适应网络拓扑结构变化的可移植性问题。该方法以单个线路、母线和变压器为元胞对象,以保护各元胞的所有关联保护和对应的断路... 提出了基于径向基函数神经网络的电网模糊元胞故障诊断方法,旨在有效解决神经网络应用于电网故障诊断所面临的适应网络拓扑结构变化的可移植性问题。该方法以单个线路、母线和变压器为元胞对象,以保护各元胞的所有关联保护和对应的断路器为输入,建立了元胞通用神经网络诊断模型,并给出了故障诊断时模型的自动生成方法。此外,考虑到电网故障信息存在不完备性和不确定性,本文采用模糊矢状图来描述电网元件、保护和断路器之间的逻辑推理关系,并提取出蕴含不确定性的模糊推理规则,用于训练元胞通用神经网络。算例仿真结果表明,该方法简单、有效,能处理各种复杂故障情况,且能有效适应网络拓扑结构的变化,具有良好的容错性和可移植性。 展开更多
关键词 电力系统 元胞故障诊断 径向基函数神经网络 模糊矢状图 可移植性
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部