Aim To study the optimal guaranteed cost control problem via static output feedback for uncertain linear discrete time systems with norm bounded parameter uncertainty in both the state and the control input matric...Aim To study the optimal guaranteed cost control problem via static output feedback for uncertain linear discrete time systems with norm bounded parameter uncertainty in both the state and the control input matrices of the state space model. Methods\ An upper bound on a quadratic cost index was found for all admissible parameter uncertainties and minimized by using Lagrange multiplier approach. Results and Conclusion\ Sufficient conditions are given for the existence of a controller guaranteeing the closed loop system quadratic stability and providing an optimized bound. A numerical algorithm for solving the output feedback gain is also presented.展开更多
Linear canonical transformation(LCT)is a generalization of the Fourier transform and fractional Fourier transform.The recent research has shown that the LCT is widely used in signal processing and applied mathematics,...Linear canonical transformation(LCT)is a generalization of the Fourier transform and fractional Fourier transform.The recent research has shown that the LCT is widely used in signal processing and applied mathematics,and the discretization of the LCT becomes vital for the applic-ations of LCT.Based on the development of discretization LCT,a review of important research progress and current situation is presented,which can help researchers to further understand the discretization of LCT and can promote its engineering application.Meanwhile,the connection among different discretization algorithms and the future research are given.展开更多
文摘Aim To study the optimal guaranteed cost control problem via static output feedback for uncertain linear discrete time systems with norm bounded parameter uncertainty in both the state and the control input matrices of the state space model. Methods\ An upper bound on a quadratic cost index was found for all admissible parameter uncertainties and minimized by using Lagrange multiplier approach. Results and Conclusion\ Sufficient conditions are given for the existence of a controller guaranteeing the closed loop system quadratic stability and providing an optimized bound. A numerical algorithm for solving the output feedback gain is also presented.
基金supported by the National Natural Science Found-ation of China(No.62001193).
文摘Linear canonical transformation(LCT)is a generalization of the Fourier transform and fractional Fourier transform.The recent research has shown that the LCT is widely used in signal processing and applied mathematics,and the discretization of the LCT becomes vital for the applic-ations of LCT.Based on the development of discretization LCT,a review of important research progress and current situation is presented,which can help researchers to further understand the discretization of LCT and can promote its engineering application.Meanwhile,the connection among different discretization algorithms and the future research are given.