For packet-based transmission of data over a network, or temporary sensor failure, etc., data samples may be missing in the measured signals. This paper deals with the problem of H∞ filter design for linear discrete-...For packet-based transmission of data over a network, or temporary sensor failure, etc., data samples may be missing in the measured signals. This paper deals with the problem of H∞ filter design for linear discrete-time systems with missing measurements. The missing measurements will happen at any sample time, and the probability of the occurrence of missing data is assumed to be known. The main purpose is to obtain both full-and reduced-order filters such that the filter error systems are exponentially mean-square stable and guarantee a prescribed H∞ performance in terms of linear matrix inequality (LMI). A numerical example is provided to demonstrate the validity of the proposed design approach.展开更多
As saturation is involved in the stabilizing feedback control of a linear discrete-time system, the original global-asymptotic stabilization (GAS) may drop to region-asymptotic stabilization (RAS). How to test if the ...As saturation is involved in the stabilizing feedback control of a linear discrete-time system, the original global-asymptotic stabilization (GAS) may drop to region-asymptotic stabilization (RAS). How to test if the saturated feedback system is GAS or RAS? The paper presents a criterion to answer this question, and describes an algorithm to calculate an invariant attractive ellipsoid for the RAS case. At last, the effectiveness of the approach is shown with examples.展开更多
Stability analysis and stabilization for discrete-time singular delay systems are addressed,respectively.Firstly,a sufficient condition for regularity,causality and stability for discrete-time singular delay systems i...Stability analysis and stabilization for discrete-time singular delay systems are addressed,respectively.Firstly,a sufficient condition for regularity,causality and stability for discrete-time singular delay systems is derived.Then,by applying the skill of matrix theory,the state feedback controller is designed to guarantee the closed-loop discrete-time singular delay systems to be regular,casual and stable.Finally,numerical examples are given to demonstrate the effectiveness of the proposed method.展开更多
The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback me...The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback method, the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of H∞ disturbance attenuation not only when all actuators are operational, but also in case of some actuator failures, The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). A numerical example is also given to illustrate the design procedures and their effectiveness.展开更多
Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to ...Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to be an additive combination of a linear regulator part and a nonlinear feedback part. The linear regulator part solves the regulation problem independently which produces a quick output response but large oscillations. The nonlinear feedback part with well-tuned parameters is introduced to improve the transient performance by smoothing the oscillatory convergence. It is shown that the introduction of the nonlinear feedback part does not change the solvability conditions of the linear discrete-time output regulation problem. The effectiveness of transient improvement is illustrated by a numeric example.展开更多
This paper is concerned with the problem of robust sliding-mode filtering for a class of uncertain nonlinear discrete-time systems with time-delays. The nonlinearities are assumed to satisfy global Lipschitz condition...This paper is concerned with the problem of robust sliding-mode filtering for a class of uncertain nonlinear discrete-time systems with time-delays. The nonlinearities are assumed to satisfy global Lipschitz conditions and parameter uncertainties are supposed to reside in a polytope. The resulting filter is of the Luenberger type with the discontinuous form. A sufficient condition with delay-dependency is proposed for existence of such a filter. And the desired filter can be found by solving a set of matrix inequalities. The resulting filter adapts for the systems whose noise input is real functional bounded and not be required to be energy bounded. A numerical example is given to illustrate the effectiveness of the proposed design method.展开更多
The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By ...The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By constructing a novel switched Lyapunov-Krasovskii functional,a delay-dependent criterion for the unforced system to be regular,causal and uniformly asymptotically stable is established in terms of linear matrix inequalities(LMIs).An explicit expression for the desired memoryless state feedback stabilization controller is also given.The merits of the proposed criteria lie in their less conservativeness and relative simplicity,which are achieved by considering additionally useful terms(ignored in previous methods) when estimating the upper bound of the forward difference of the Lyapunov-Krasovskii functional and by avoiding utilizing any model augmentation transformation.Some numerical examples are provided to illustrate the validity of the proposed methods.展开更多
The memory state feedback control problem for a class of discrete-time systems with input delay and unknown state delay is addressed based on LMIs and Lyapunov-Krasovskii functional method. Under the action of our des...The memory state feedback control problem for a class of discrete-time systems with input delay and unknown state delay is addressed based on LMIs and Lyapunov-Krasovskii functional method. Under the action of our designed adaptive control law, the unknown time-delay parameter is included in memory state feedback controller. Using LMI technique, delay-dependent sufficient conditions for the existence of the feedback controller are obtained. Finally, the effectiveness of the proposed design method is demonstrated by a numerical example.展开更多
The problem of fault detection for linear discrete timevarying systems with multiplicative noise is dealt with.By using an observer-based robust fault detection filter(FDF) as a residual generator,the design of the ...The problem of fault detection for linear discrete timevarying systems with multiplicative noise is dealt with.By using an observer-based robust fault detection filter(FDF) as a residual generator,the design of the FDF is formulated in the framework of H ∞ filtering for a class of stochastic time-varying systems.A sufficient condition for the existence of the FDF is derived in terms of a Riccati equation.The determination of the parameter matrices of the filter is converted into a quadratic optimization problem,and an analytical solution of the parameter matrices is obtained by solving the Riccati equation.Numerical examples are given to illustrate the effectiveness of the proposed method.展开更多
An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membe...An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membership functions in fuzzy logic systems are adjusted according to adaptive laws for the purpose of controlling the plant to track a reference trajectory. It is proved that the scheme can not only guarantee the boundedness of the input and output of the closed-loop system, but also make the tracking error converge to a small neighborhood of the origin. Simulation results indicate the effectiveness of this scheme.展开更多
A robust stabilization problem is considered for time delay nonlinear discrete-time systems based on T-S fuzzy model. A necessary and sufficient condition for the existence of such controllers is given through Lyapuno...A robust stabilization problem is considered for time delay nonlinear discrete-time systems based on T-S fuzzy model. A necessary and sufficient condition for the existence of such controllers is given through Lyapunov stability theorem. And it is further shown that this condition is equivalent to the solvability of a certain linear matrix inequality, which can be solved easily by using the LMI toolbox of Matlab. At last, an illustrative example of truck-trailer is presented to show the feasibility and effectiveness of the proposed method.展开更多
This article deals with the uniformly globally asymptotic controllability of discrete nonlinear systems with disturbances.It is shown that the system is uniformly globally asymptotic controllability with respect to a ...This article deals with the uniformly globally asymptotic controllability of discrete nonlinear systems with disturbances.It is shown that the system is uniformly globally asymptotic controllability with respect to a closed set if and only if there exists a smooth control Lyapunov function.Further, it is obtained that the control Lyapunov function may be used to construct a feedback law to stabilize the closed-loop system.In addition, it is proved that for periodic discrete systems, the resulted control Lyapunov functions are also time periodic.展开更多
One of the first attempts to derive energy-to-peak performance criteria and state-feedback controller design problem for linear parameter-varying discrete time systems with time delay is provided. Firstly, we present ...One of the first attempts to derive energy-to-peak performance criteria and state-feedback controller design problem for linear parameter-varying discrete time systems with time delay is provided. Firstly, we present a parameter-dependent l 2-l ∞ performance criterion using a parameter-dependent Lyapunov function. Upon the conditions addressed, an improved parameter-dependent l 2-l ∞ performance criterion is established by the introduction of a slack variable, which exhibits a kind of decoupling between Lyapunov functions and system matrices. This kind of decoupling enables us to obtain more easily tractable conditions for analysis and synthesis problems. Then, the corresponding parameter-dependent state-feedback controller design is investigated upon these performance criteria, with sufficient conditions obtained for the existence of admissible controllers in terms of parameterized linear matrix inequalities. Finally, a numerical example is provided to illustrate the feasibility and advantage of the proposed controller design procedure.展开更多
The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensure...The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensures robust stochastic stability while achieving a prescribed H∞ performance level of the resulting filtering error system, for all admissible uncertainties. The key features of the approach include the introduction of a new type of stochastic Lyapunov functional and some free weighting matrix variables. Sufficient conditions for the solvability of this problem are obtained in terms of a set of linear matrix inequalities. Numerical examples are provided to demonstrate the reduced conservatism of the proposed approach.展开更多
基金Supported by National Natural Science Foundation of P.R.China (60474049)the Natural Science Foundation of Fujian Province of P. R. China (A0410012, A0510009)
文摘For packet-based transmission of data over a network, or temporary sensor failure, etc., data samples may be missing in the measured signals. This paper deals with the problem of H∞ filter design for linear discrete-time systems with missing measurements. The missing measurements will happen at any sample time, and the probability of the occurrence of missing data is assumed to be known. The main purpose is to obtain both full-and reduced-order filters such that the filter error systems are exponentially mean-square stable and guarantee a prescribed H∞ performance in terms of linear matrix inequality (LMI). A numerical example is provided to demonstrate the validity of the proposed design approach.
基金Supported by National Natural Science Foundation of China (60974148), Program for New Century Excellent Talents in University (NCET-10-0097), Sichuan Youth Science and Technology Fund (2011JQ0011), Southwest University for Nationalities Construction Projects for Graduate Degree Programs (2011XWD-S0805), and Southwest University for Nationalities Fundamental Research Funds for the Central Universities (12NZYTH01)
基金Supported by National Natural Science Foundation of P. R. China (60174040)
文摘As saturation is involved in the stabilizing feedback control of a linear discrete-time system, the original global-asymptotic stabilization (GAS) may drop to region-asymptotic stabilization (RAS). How to test if the saturated feedback system is GAS or RAS? The paper presents a criterion to answer this question, and describes an algorithm to calculate an invariant attractive ellipsoid for the RAS case. At last, the effectiveness of the approach is shown with examples.
基金supported by the National Natural Science Foundation of China (6090400960974004)
文摘Stability analysis and stabilization for discrete-time singular delay systems are addressed,respectively.Firstly,a sufficient condition for regularity,causality and stability for discrete-time singular delay systems is derived.Then,by applying the skill of matrix theory,the state feedback controller is designed to guarantee the closed-loop discrete-time singular delay systems to be regular,casual and stable.Finally,numerical examples are given to demonstrate the effectiveness of the proposed method.
基金Supported by National Basic Research and Development Program of China (973 Program) (2009CB320600), National Natural Science Foundation of China (60774004), Taishan Scholar Construction Engineering of Shandong Government, National Natural Science Foundation for Distinguished Young Scholars of China (60825304)
基金the National Natural Science Foundation of China (60574001)Program for New Century Excellent Talents in University (05-0485)Program for Innovative Research Team of Jiangnan University
文摘The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback method, the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of H∞ disturbance attenuation not only when all actuators are operational, but also in case of some actuator failures, The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). A numerical example is also given to illustrate the design procedures and their effectiveness.
基金supported by the National Natural Science Foundation of China(61074004)the Research Fund for the Doctoral Program of Higher Education(20110121110017)
文摘Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to be an additive combination of a linear regulator part and a nonlinear feedback part. The linear regulator part solves the regulation problem independently which produces a quick output response but large oscillations. The nonlinear feedback part with well-tuned parameters is introduced to improve the transient performance by smoothing the oscillatory convergence. It is shown that the introduction of the nonlinear feedback part does not change the solvability conditions of the linear discrete-time output regulation problem. The effectiveness of transient improvement is illustrated by a numeric example.
基金Supported by National Natural Science Foundation of P. R. China (69874008)
文摘This paper is concerned with the problem of robust sliding-mode filtering for a class of uncertain nonlinear discrete-time systems with time-delays. The nonlinearities are assumed to satisfy global Lipschitz conditions and parameter uncertainties are supposed to reside in a polytope. The resulting filter is of the Luenberger type with the discontinuous form. A sufficient condition with delay-dependency is proposed for existence of such a filter. And the desired filter can be found by solving a set of matrix inequalities. The resulting filter adapts for the systems whose noise input is real functional bounded and not be required to be energy bounded. A numerical example is given to illustrate the effectiveness of the proposed design method.
基金supported by the National Natural Science Foundation of China(6090402060835001)the Jiangsu Planned Projects for Postdoctoral Research Funds(0802010C)
文摘The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By constructing a novel switched Lyapunov-Krasovskii functional,a delay-dependent criterion for the unforced system to be regular,causal and uniformly asymptotically stable is established in terms of linear matrix inequalities(LMIs).An explicit expression for the desired memoryless state feedback stabilization controller is also given.The merits of the proposed criteria lie in their less conservativeness and relative simplicity,which are achieved by considering additionally useful terms(ignored in previous methods) when estimating the upper bound of the forward difference of the Lyapunov-Krasovskii functional and by avoiding utilizing any model augmentation transformation.Some numerical examples are provided to illustrate the validity of the proposed methods.
基金supported by the National Natural Science Foundation of China (60574006 60804017+2 种基金 608350017)the Foundation of Doctor(20060286039)the Jiangsu Provincal Sustentation Fund of Recruiting Post Doctor(1660631171)
文摘The memory state feedback control problem for a class of discrete-time systems with input delay and unknown state delay is addressed based on LMIs and Lyapunov-Krasovskii functional method. Under the action of our designed adaptive control law, the unknown time-delay parameter is included in memory state feedback controller. Using LMI technique, delay-dependent sufficient conditions for the existence of the feedback controller are obtained. Finally, the effectiveness of the proposed design method is demonstrated by a numerical example.
基金supported by the National Natural Science Foundation of China (61174121,61121003)the National High Technology Researchand Development Program of China (863 Program) (2008AA121302)+1 种基金the National Basic Research Program of China (973 Program)(2009CB724000)the Research Fund for the Doctoral Program of Higher Education of China
文摘The problem of fault detection for linear discrete timevarying systems with multiplicative noise is dealt with.By using an observer-based robust fault detection filter(FDF) as a residual generator,the design of the FDF is formulated in the framework of H ∞ filtering for a class of stochastic time-varying systems.A sufficient condition for the existence of the FDF is derived in terms of a Riccati equation.The determination of the parameter matrices of the filter is converted into a quadratic optimization problem,and an analytical solution of the parameter matrices is obtained by solving the Riccati equation.Numerical examples are given to illustrate the effectiveness of the proposed method.
基金surported by Tianjin Science and Technology Development for Higher Education(20051206).
文摘An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membership functions in fuzzy logic systems are adjusted according to adaptive laws for the purpose of controlling the plant to track a reference trajectory. It is proved that the scheme can not only guarantee the boundedness of the input and output of the closed-loop system, but also make the tracking error converge to a small neighborhood of the origin. Simulation results indicate the effectiveness of this scheme.
基金Supported by National Natural Science Foundation of P. R. China (60274009)
文摘A robust stabilization problem is considered for time delay nonlinear discrete-time systems based on T-S fuzzy model. A necessary and sufficient condition for the existence of such controllers is given through Lyapunov stability theorem. And it is further shown that this condition is equivalent to the solvability of a certain linear matrix inequality, which can be solved easily by using the LMI toolbox of Matlab. At last, an illustrative example of truck-trailer is presented to show the feasibility and effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (60774011)the Natural Science Foundation of Fujian Province (2008J0026)
文摘This article deals with the uniformly globally asymptotic controllability of discrete nonlinear systems with disturbances.It is shown that the system is uniformly globally asymptotic controllability with respect to a closed set if and only if there exists a smooth control Lyapunov function.Further, it is obtained that the control Lyapunov function may be used to construct a feedback law to stabilize the closed-loop system.In addition, it is proved that for periodic discrete systems, the resulted control Lyapunov functions are also time periodic.
文摘One of the first attempts to derive energy-to-peak performance criteria and state-feedback controller design problem for linear parameter-varying discrete time systems with time delay is provided. Firstly, we present a parameter-dependent l 2-l ∞ performance criterion using a parameter-dependent Lyapunov function. Upon the conditions addressed, an improved parameter-dependent l 2-l ∞ performance criterion is established by the introduction of a slack variable, which exhibits a kind of decoupling between Lyapunov functions and system matrices. This kind of decoupling enables us to obtain more easily tractable conditions for analysis and synthesis problems. Then, the corresponding parameter-dependent state-feedback controller design is investigated upon these performance criteria, with sufficient conditions obtained for the existence of admissible controllers in terms of parameterized linear matrix inequalities. Finally, a numerical example is provided to illustrate the feasibility and advantage of the proposed controller design procedure.
文摘The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensures robust stochastic stability while achieving a prescribed H∞ performance level of the resulting filtering error system, for all admissible uncertainties. The key features of the approach include the introduction of a new type of stochastic Lyapunov functional and some free weighting matrix variables. Sufficient conditions for the solvability of this problem are obtained in terms of a set of linear matrix inequalities. Numerical examples are provided to demonstrate the reduced conservatism of the proposed approach.