This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of bea...This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of beam according to a power-law function and the equivalent parameters are formulated.The governing differential equations,which can be solved by direct integration,are established by employing the composite laminated plate theory.The influences of FG parameter,ambient temperature and SMA fiber laying angle on the thermo-mechanical behaviors are numerically simulated and discussed under different boundary conditions.Results indicate that the neutral plane does not coincide with the middle plane of the composite beam and the distribution of martensite is asymmetric along the thickness.Both the increments of the functionally graded parameter and ambient temperature make the composite beam become stiffer.However,the influence of the SMA fiber laying angle can be negligent.This work can provide the theoretical basis for the design and application of FG SMA structures.展开更多
The paper introduces a method to get three-dimensional reproduction of log shape by adopting Spline Function in fitting the curve of the finite log data. The method has ad-vantages of higher accuracy, less acquired da...The paper introduces a method to get three-dimensional reproduction of log shape by adopting Spline Function in fitting the curve of the finite log data. The method has ad-vantages of higher accuracy, less acquired data, easier to use, etc. Making use of high-precision drawing function of computer, the graphs of log geometric shape in different visual angles can be achieved easily with this method. It also provided a firm foundation for the determination of optimum saw cutting scheme.展开更多
Many mechanical problems can be induced from differential equations with boundary conditions; there exist analytic and numerical methods for solving the differential equations. Usually it is not so easy to obtain anal...Many mechanical problems can be induced from differential equations with boundary conditions; there exist analytic and numerical methods for solving the differential equations. Usually it is not so easy to obtain analytic solutions. So it is necessary to give numerical solutions. The reproducing kernel particle (RKP) method is based on the Carlerkin Meshless method. According to the Sobolev space and Fourier transform, the RKP shape function is mathematically proved in this paper.展开更多
Using the method of undetermined coefficients, we construct a set of shape function spaces of nine-node triangular plate elements converging for any meshes, which generalize Spect's element and Veubeke's element.
Three-dimensional(3D)shape registration is a challenging problem,especially for shapes under non-rigid transformations.In this paper,a 3D non-rigid shape registration method is proposed,called balanced functional maps...Three-dimensional(3D)shape registration is a challenging problem,especially for shapes under non-rigid transformations.In this paper,a 3D non-rigid shape registration method is proposed,called balanced functional maps(BFM).The BFM algorithm generalizes the point-based correspondence to functions.By choosing the Laplace-Beltrami eigenfunctions as the function basis,the transformations between shapes can be represented by the functional map(FM)matrix.In addition,many constraints on shape registration,such as the feature descriptor,keypoint,and salient region correspondence,can be formulated linearly using the matrix.By bi-directionally searching for the nearest neighbors of points’indicator functions in the function space,the point-based correspondence can be derived from FMs.We conducted several experiments on the Topology and Orchestration Specification for Cloud Applications(TOSCA)dataset and the Shape Completion and Animation of People(SCAPE)dataset.Experimental results show that the proposed BFM algorithm is effective and has superior performance than the state-of-the-art methods on both datasets.展开更多
Permanent plots in the montane tropical rain forests in Xishuangbanna, southwest China, were established, and different empirical models, based on observation data of these plots in 1992, were built to model diameter ...Permanent plots in the montane tropical rain forests in Xishuangbanna, southwest China, were established, and different empirical models, based on observation data of these plots in 1992, were built to model diameter frequency distributions. The focus of this study is on predicting accuracy of stem number in the larger diameter classes, which is much more important than that of the smaller trees, from the view of forest management, and must be adequately considered in the modelling and estimate. There exist 3 traditional ways of modelling the diameter frequency distribution: the negative exponential function model, limiting line function model, and Weibull distribution model. In this study, a new model, named as the logarithmic J-shape function, together with the others, was experimented and was found as a more suitable model for modelling works in the tropical forests.展开更多
We present a systematic analysis on the role of the quantum dot (QD) shape in the influence of the phonon bath on the dynamics of a QD cavity QED system. The spectral functions of the phonon bath in three representa...We present a systematic analysis on the role of the quantum dot (QD) shape in the influence of the phonon bath on the dynamics of a QD cavity QED system. The spectral functions of the phonon bath in three representative QD shapes: spherical, ellipsoidal, and disk, are calculated from the carrier wave functions subjected to the confinement potential provided by the corresponding shape. The obtained spectral functions are used to calculate three main effects brought by the phonon bath, i.e., the coupling renormalization, the off-resonance assisted feeding rate and the pure dephasing rate. It is found that the spectral function of a disk QD has the widest distribution, hence the phonon bath in a disk QD can lead to the smallest renormalization factor, the largest dephasing rate in the short time domains(≤2 ps), and the oft-resonance assisted feeding can support the widest detuning. Except for the pure dephasing rate in the long time domains, all the influences brought by the phonon bath show serious shape dependence.展开更多
The aim of the present study is to develop an efficient weak form quadrature element for free vibration analysis of arbitrarily shaped membranes.The arbitrarily shaped membrane is firstly mapped into a regular domain ...The aim of the present study is to develop an efficient weak form quadrature element for free vibration analysis of arbitrarily shaped membranes.The arbitrarily shaped membrane is firstly mapped into a regular domain using blending functions,and the displacement in the element is assumed as the trigonometric functions.Explicit formulations are worked out for nodes of any type and a varying number of nodes.For verifications,results are compared with exact solutions and data obtained by other numerical methods.It is demonstrated that highly accurate frequencies can be obtained with a small number of nodes by present method.展开更多
In this work,the electronic transport properties of Z-shaped silicene nanoribbon(ZsSiNR) structure are investigated.The calculations are based on the tight-binding model and Green's function method in Landauer-Biit...In this work,the electronic transport properties of Z-shaped silicene nanoribbon(ZsSiNR) structure are investigated.The calculations are based on the tight-binding model and Green's function method in Landauer-Biittiker formalism,in which the electronic density of states(DOS),transmission probability,and current-voltage characteristics of the system are calculated,numerically.It is shown that the geometry of the ZsSiNR structure can play an important role to control the electron transport through the system.It is observed that the intensity of electron localization at the edges of the ZsSiNR decreases with the increase of the spin-orbit interaction(SOI) strength.Also,the semiconductor to metallic transition occurs by increasing the SOI strength.The present theoretical results may be useful to design silicene-based devices in nanoelectronics.展开更多
For the conventional translational shape-invariant potentials (TSIPs), it has demonstrated that the phase contribution devoted by the scattered subwaves in the analytical transfer matrix quantization condition is in...For the conventional translational shape-invariant potentials (TSIPs), it has demonstrated that the phase contribution devoted by the scattered subwaves in the analytical transfer matrix quantization condition is integrable and independent of n. Based on this fact we propose a novel strategy to generate the whole set of conventional TSIPs and classify them into three types. The generating functions are given explicitly and the Morse potential is taken as an example to illustrate this strategy.展开更多
The exact solutions of the Schr6dinger equation with the double ring-shaped Coulomb potential are presented, including the bound states, continuous states on the "k/2π scale", and the calculation formula of the pha...The exact solutions of the Schr6dinger equation with the double ring-shaped Coulomb potential are presented, including the bound states, continuous states on the "k/2π scale", and the calculation formula of the phase shifts. The polar angular wave functions are expressed by constructing the so-called super-universal associated Legendre polynomials. Some special cases are discussed in detail.展开更多
文摘This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of beam according to a power-law function and the equivalent parameters are formulated.The governing differential equations,which can be solved by direct integration,are established by employing the composite laminated plate theory.The influences of FG parameter,ambient temperature and SMA fiber laying angle on the thermo-mechanical behaviors are numerically simulated and discussed under different boundary conditions.Results indicate that the neutral plane does not coincide with the middle plane of the composite beam and the distribution of martensite is asymmetric along the thickness.Both the increments of the functionally graded parameter and ambient temperature make the composite beam become stiffer.However,the influence of the SMA fiber laying angle can be negligent.This work can provide the theoretical basis for the design and application of FG SMA structures.
文摘The paper introduces a method to get three-dimensional reproduction of log shape by adopting Spline Function in fitting the curve of the finite log data. The method has ad-vantages of higher accuracy, less acquired data, easier to use, etc. Making use of high-precision drawing function of computer, the graphs of log geometric shape in different visual angles can be achieved easily with this method. It also provided a firm foundation for the determination of optimum saw cutting scheme.
文摘Many mechanical problems can be induced from differential equations with boundary conditions; there exist analytic and numerical methods for solving the differential equations. Usually it is not so easy to obtain analytic solutions. So it is necessary to give numerical solutions. The reproducing kernel particle (RKP) method is based on the Carlerkin Meshless method. According to the Sobolev space and Fourier transform, the RKP shape function is mathematically proved in this paper.
文摘Using the method of undetermined coefficients, we construct a set of shape function spaces of nine-node triangular plate elements converging for any meshes, which generalize Spect's element and Veubeke's element.
基金the China Scholarship Council under Grant No.201406070059.
文摘Three-dimensional(3D)shape registration is a challenging problem,especially for shapes under non-rigid transformations.In this paper,a 3D non-rigid shape registration method is proposed,called balanced functional maps(BFM).The BFM algorithm generalizes the point-based correspondence to functions.By choosing the Laplace-Beltrami eigenfunctions as the function basis,the transformations between shapes can be represented by the functional map(FM)matrix.In addition,many constraints on shape registration,such as the feature descriptor,keypoint,and salient region correspondence,can be formulated linearly using the matrix.By bi-directionally searching for the nearest neighbors of points’indicator functions in the function space,the point-based correspondence can be derived from FMs.We conducted several experiments on the Topology and Orchestration Specification for Cloud Applications(TOSCA)dataset and the Shape Completion and Animation of People(SCAPE)dataset.Experimental results show that the proposed BFM algorithm is effective and has superior performance than the state-of-the-art methods on both datasets.
文摘Permanent plots in the montane tropical rain forests in Xishuangbanna, southwest China, were established, and different empirical models, based on observation data of these plots in 1992, were built to model diameter frequency distributions. The focus of this study is on predicting accuracy of stem number in the larger diameter classes, which is much more important than that of the smaller trees, from the view of forest management, and must be adequately considered in the modelling and estimate. There exist 3 traditional ways of modelling the diameter frequency distribution: the negative exponential function model, limiting line function model, and Weibull distribution model. In this study, a new model, named as the logarithmic J-shape function, together with the others, was experimented and was found as a more suitable model for modelling works in the tropical forests.
基金supported by the National Natural Science Foundation of China(Grant No.10974072)
文摘We present a systematic analysis on the role of the quantum dot (QD) shape in the influence of the phonon bath on the dynamics of a QD cavity QED system. The spectral functions of the phonon bath in three representative QD shapes: spherical, ellipsoidal, and disk, are calculated from the carrier wave functions subjected to the confinement potential provided by the corresponding shape. The obtained spectral functions are used to calculate three main effects brought by the phonon bath, i.e., the coupling renormalization, the off-resonance assisted feeding rate and the pure dephasing rate. It is found that the spectral function of a disk QD has the widest distribution, hence the phonon bath in a disk QD can lead to the smallest renormalization factor, the largest dephasing rate in the short time domains(≤2 ps), and the oft-resonance assisted feeding can support the widest detuning. Except for the pure dephasing rate in the long time domains, all the influences brought by the phonon bath show serious shape dependence.
基金supported by the National Natural Science Foundation of China(Nos.52005256,12072154)the Natural Science Foundation of Jiangsu Province(No.BK20190394)+1 种基金the Jiangsu Post-Doctoral Research Funding Program(No.2020Z437)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘The aim of the present study is to develop an efficient weak form quadrature element for free vibration analysis of arbitrarily shaped membranes.The arbitrarily shaped membrane is firstly mapped into a regular domain using blending functions,and the displacement in the element is assumed as the trigonometric functions.Explicit formulations are worked out for nodes of any type and a varying number of nodes.For verifications,results are compared with exact solutions and data obtained by other numerical methods.It is demonstrated that highly accurate frequencies can be obtained with a small number of nodes by present method.
基金Project supported by the Sari Branch,Islamic Azad University,Iran Grant No.1-24850
文摘In this work,the electronic transport properties of Z-shaped silicene nanoribbon(ZsSiNR) structure are investigated.The calculations are based on the tight-binding model and Green's function method in Landauer-Biittiker formalism,in which the electronic density of states(DOS),transmission probability,and current-voltage characteristics of the system are calculated,numerically.It is shown that the geometry of the ZsSiNR structure can play an important role to control the electron transport through the system.It is observed that the intensity of electron localization at the edges of the ZsSiNR decreases with the increase of the spin-orbit interaction(SOI) strength.Also,the semiconductor to metallic transition occurs by increasing the SOI strength.The present theoretical results may be useful to design silicene-based devices in nanoelectronics.
基金supported by the State Key Laboratory of Advanced Optical Communication Systems and Networks of China (Grant No. 2008SH05)
文摘For the conventional translational shape-invariant potentials (TSIPs), it has demonstrated that the phase contribution devoted by the scattered subwaves in the analytical transfer matrix quantization condition is integrable and independent of n. Based on this fact we propose a novel strategy to generate the whole set of conventional TSIPs and classify them into three types. The generating functions are given explicitly and the Morse potential is taken as an example to illustrate this strategy.
基金Project supported by the National Natural Science Foundation of China(Grant No.11275165)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2010291)partly by Secretaria de Investigacio'ny Posgrado de Instituto Polite'cnico Nacional,Mexico(Grant No.20131150-SIP-IPN)
文摘The exact solutions of the Schr6dinger equation with the double ring-shaped Coulomb potential are presented, including the bound states, continuous states on the "k/2π scale", and the calculation formula of the phase shifts. The polar angular wave functions are expressed by constructing the so-called super-universal associated Legendre polynomials. Some special cases are discussed in detail.