Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based ...Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.展开更多
This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the b...This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the background makes com- pressive sensing (CS) desirable for DOA estimation. A spatial CS framework is presented, which links the DOA estimation problem to support recovery from a known over-complete dictionary. A modified statistical model is developed to ac- curately represent the intra-block correlation of the received signal. A structural sparsity Bayesian learning algorithm is proposed for the sparse recovery problem. The proposed algorithm, which exploits intra-signal correlation, is capable being applied to limited data support and low signal-to-noise ratio (SNR) scene. Furthermore, the proposed algorithm has less computation load compared to the classical Bayesian algorithm. Simulation results show that the proposed algorithm has a more accurate DOA estimation than the traditional multiple signal classification (MUSIC) algorithm and other CS recovery algorithms.展开更多
A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with ...A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with systematic experimental data, demonstrating an improved FBG geophone with many advantages over the conventional geophones. An innovative, robust, and simple algorithm is developed for obtaining the bearing information on the seismic events, such as people walking, or vehicles moving. Such DOA estimate is based on the interactions and projections of surface-propagating seismic waves generated by the moving personnel or vehicles with a single tri-axial seismic sensor based on FBGs. Of particular interest is the case when the distance between the source of the seismic wave and the detector is less than or comparable to one wavelength (less than 100 m), corresponding to near-field detection, where an effective method of DOA finding lacks.展开更多
A theoretical relationship between the wavelet transform and the fast fourier transformation(FFT) methods in broadband wireless signal is proposed for solving the direction of arrivals(DOAs) estimation problem. This l...A theoretical relationship between the wavelet transform and the fast fourier transformation(FFT) methods in broadband wireless signal is proposed for solving the direction of arrivals(DOAs) estimation problem. This leads naturally to the derivation of minimum variance distortionless response(MVDR) algorithm, which combines the benefits of subspace methods with those of wavelet, and spatially smoothed versions are utilized which exhibits good performance against correlated signals. We test the method's performance by simulating and comparing the performance of proposed algorithm, FFT MVDR and MVDR with correlated signals, and an improved performance is obtained.展开更多
A new method is presented to estimate two-dimensional (2-D) Direction-of-Arrival (DOA) angles of narrowband real-valued signals impinging on a L-shape Arrays(LA). The basic idea of the proposed method is to incr...A new method is presented to estimate two-dimensional (2-D) Direction-of-Arrival (DOA) angles of narrowband real-valued signals impinging on a L-shape Arrays(LA). The basic idea of the proposed method is to increase both the effective aperture size and the number of sensors by employing the conjugate invariance property of real-valued signals. Thus, the proposed method can provide a more precise DOA and detect more signals than the Cross-Correlation Matrix Method (CCMM). Numerical simulation results are presented to support the theory.展开更多
In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subar...In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subarrays to obtain the complete output vector. Considering the anisotropic radiation pattern of a CCA, which cannot be separated from the manifold matrix, an improved interpolation method is investigated to transform the directional subarray into omnidirectional virtual nested arrays without non-orthogonal perturbation on the noise vector. Then, the cross-correlation matrix(CCM) of the subarrays is used to generate the consecutive co-arrays without redundant elements and eliminate the noise vector. Finally, the full-rank equivalent covariance matrix is constructed using the output of co-arrays,and the unitary estimation of the signal parameters via rotational invariance techniques(ESPRIT) is performed on the equivalent covariance matrix to estimate the DOAs with low computational complexity. Numerical simulations verify the superior performance of the proposed algorithm, especially under a low signal-to-noise ratio(SNR) environment.展开更多
由于传统的欧式空间方法无法有效反映协方差矩阵之间的差异,而导致信息损失,为了解决这一问题,提出了一种基于詹森-布雷格曼洛格德特散度(Jensen-Bregman LogDet divergence)的阵列波达方向(Direction of Arrival,DOA)估计方法,将目标...由于传统的欧式空间方法无法有效反映协方差矩阵之间的差异,而导致信息损失,为了解决这一问题,提出了一种基于詹森-布雷格曼洛格德特散度(Jensen-Bregman LogDet divergence)的阵列波达方向(Direction of Arrival,DOA)估计方法,将目标方位估计问题转化为矩阵流形上两点间的几何距离问题,揭示了方位估计与黎曼空间矩阵流形的映射规律,从而得到了几何距离最小值处对应的角度即为目标入射角度的结论,并通过构建两个强鲁棒性的矩阵流形,完成了矩阵信息几何DOA估计理论模型的建立。通过模拟仿真与实测数据对所新方法进行了验证。验证结果表明:与现有的最小方差无失真响应算法和多信号分类算法相比,新方法在低信噪比环境下拥有更好的估计精度;新方法的应用具有一定的实际意义和应用前景,可以为海洋防御及民用领域中的水下目标方位估计等提供坚实的技术支持。展开更多
针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条...针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条件,依据稀疏率和阵元数将孔径自适应分区,以阵列峰值旁瓣和孔径为约束,由双层嵌套循环迭代优化阵列麦克风数量和位置,获得更低的阵列峰值旁瓣电平。数值仿真和实验结果表明,根据该方法获得的49.5λ孔径、23%稀疏率的稀疏阵列峰值旁瓣电平为-21.59 dB,主瓣宽度为1.03°,角度分辨率为1°,估计误差小于0.01。与其他方法对比,峰值旁瓣低1 d B,优化效率提升50%,由此可证明该方法的有效性和快速性。展开更多
Sparse array design has significant implications for improving the accuracy of direction of arrival(DOA)estimation of non-circular(NC)signals.We propose an extended nested array with a filled sensor(ENAFS)based on the...Sparse array design has significant implications for improving the accuracy of direction of arrival(DOA)estimation of non-circular(NC)signals.We propose an extended nested array with a filled sensor(ENAFS)based on the hole-filling strategy.Specifically,we first introduce the improved nested array(INA)and prove its properties.Subsequently,we extend the sum-difference coarray(SDCA)by adding an additional sensor to fill the holes.Thus the larger uniform degrees of freedom(uDOFs)and virtual array aperture(VAA)can be abtained,and the ENAFS is designed.Finally,the simulation results are given to verify the superiority of the proposed ENAFS in terms of DOF,mutual coupling and estimation performance.展开更多
在高速铁路场景下,准确估计和跟踪无线电信号的波达方向(Direction of Arrival, DOA)能够有效提升无线通信服务质量.然而,高速移动的无线信道具有快速时变特性,对信号处理的速度和准确性提出了更高的挑战.针对传统的基于信号子空间的DO...在高速铁路场景下,准确估计和跟踪无线电信号的波达方向(Direction of Arrival, DOA)能够有效提升无线通信服务质量.然而,高速移动的无线信道具有快速时变特性,对信号处理的速度和准确性提出了更高的挑战.针对传统的基于信号子空间的DOA估计算法,由于巨大的计算量而无法应用于高速铁路快速时变系统中进行DOA跟踪的问题,提出了基于卡尔曼滤波和正交压缩近似投影子空间跟踪(Kalman Filter-Orthonormal Projection Approximation and Subspace Tracking of deflation, K-OPASTd)的DOA算法.首先,搭建基于云平台的铁路信号动态测向系统;然后,建立列车接收信号模型,提出K-OPASTd算法对DOA进行动态跟踪;最后,将本文提出的算法与OPASTd算法所得到的估计角度的均方根误差进行仿真对比实验.研究结果表明:信噪比均为10dB时,本文所提算法的均方根误差比OPASTd算法低约60%;阵元均为20时,K-OPASTd算法的均方根误差比OPASTd算法低约80%.展开更多
Mobile location using angle of arrival (AOA) measurements has received considerable attention. This paper presents an approximation of maximum likelihood estimator (MLE) for localizing a source based on AOA measur...Mobile location using angle of arrival (AOA) measurements has received considerable attention. This paper presents an approximation of maximum likelihood estimator (MLE) for localizing a source based on AOA measurements. By introducing an intermediate variable, the nonlinear equations relating AOA estimates can be transformed into a set of equations which are linear in the unknown parameters. It is an approximate realization of the MLE. Simulations show that the proposed algorithm outperforms the previous contribution.展开更多
提出一种基于声源空间域分布稀疏和声学矢量传感器“8”字形指向特性的波达方向(Direction of Arrival,DOA)估计方法。该方法在通过最优化稀疏算法选择与声源方向最匹配的向量的同时,借助声学矢量传感器中组合声矢量信号独特的“8”字...提出一种基于声源空间域分布稀疏和声学矢量传感器“8”字形指向特性的波达方向(Direction of Arrival,DOA)估计方法。该方法在通过最优化稀疏算法选择与声源方向最匹配的向量的同时,借助声学矢量传感器中组合声矢量信号独特的“8”字形指向性,进一步提升了单个声学矢量传感器测向的准确度。实验结果表明,所提方法在宽带信号短时、小快拍情形下具备较强的健壮性,能够有效抑制噪声并准确获得噪声源的空间位置,为后续的噪声控制与处理提供关键的基础信息,有助于提高噪声处理的性能和效果。展开更多
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.
基金supported by the National Natural Science Foundation of China(No.51279033).
文摘Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.
基金supported by the National Natural Science Foundation of China(Grant Nos.61071163,61271327,and 61471191)the Funding for Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics,China(Grant No.BCXJ14-08)+2 种基金the Funding of Innovation Program for Graduate Education of Jiangsu Province,China(Grant No.KYLX 0277)the Fundamental Research Funds for the Central Universities,China(Grant No.3082015NP2015504)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PADA),China
文摘This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the background makes com- pressive sensing (CS) desirable for DOA estimation. A spatial CS framework is presented, which links the DOA estimation problem to support recovery from a known over-complete dictionary. A modified statistical model is developed to ac- curately represent the intra-block correlation of the received signal. A structural sparsity Bayesian learning algorithm is proposed for the sparse recovery problem. The proposed algorithm, which exploits intra-signal correlation, is capable being applied to limited data support and low signal-to-noise ratio (SNR) scene. Furthermore, the proposed algorithm has less computation load compared to the classical Bayesian algorithm. Simulation results show that the proposed algorithm has a more accurate DOA estimation than the traditional multiple signal classification (MUSIC) algorithm and other CS recovery algorithms.
基金This project was funded in part bythe U . S . Army
文摘A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with systematic experimental data, demonstrating an improved FBG geophone with many advantages over the conventional geophones. An innovative, robust, and simple algorithm is developed for obtaining the bearing information on the seismic events, such as people walking, or vehicles moving. Such DOA estimate is based on the interactions and projections of surface-propagating seismic waves generated by the moving personnel or vehicles with a single tri-axial seismic sensor based on FBGs. Of particular interest is the case when the distance between the source of the seismic wave and the detector is less than or comparable to one wavelength (less than 100 m), corresponding to near-field detection, where an effective method of DOA finding lacks.
基金supported by the Chinese Natural Science Foundation 61401075Central University Business Fee ZYGX2015J106
文摘A theoretical relationship between the wavelet transform and the fast fourier transformation(FFT) methods in broadband wireless signal is proposed for solving the direction of arrivals(DOAs) estimation problem. This leads naturally to the derivation of minimum variance distortionless response(MVDR) algorithm, which combines the benefits of subspace methods with those of wavelet, and spatially smoothed versions are utilized which exhibits good performance against correlated signals. We test the method's performance by simulating and comparing the performance of proposed algorithm, FFT MVDR and MVDR with correlated signals, and an improved performance is obtained.
基金Supported by Program for New Century Excellent Talents in University
文摘A new method is presented to estimate two-dimensional (2-D) Direction-of-Arrival (DOA) angles of narrowband real-valued signals impinging on a L-shape Arrays(LA). The basic idea of the proposed method is to increase both the effective aperture size and the number of sensors by employing the conjugate invariance property of real-valued signals. Thus, the proposed method can provide a more precise DOA and detect more signals than the Cross-Correlation Matrix Method (CCMM). Numerical simulation results are presented to support the theory.
基金supported by the National Natural Science Foundation of China (NSFC) [grant number. 61871414]。
文摘In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subarrays to obtain the complete output vector. Considering the anisotropic radiation pattern of a CCA, which cannot be separated from the manifold matrix, an improved interpolation method is investigated to transform the directional subarray into omnidirectional virtual nested arrays without non-orthogonal perturbation on the noise vector. Then, the cross-correlation matrix(CCM) of the subarrays is used to generate the consecutive co-arrays without redundant elements and eliminate the noise vector. Finally, the full-rank equivalent covariance matrix is constructed using the output of co-arrays,and the unitary estimation of the signal parameters via rotational invariance techniques(ESPRIT) is performed on the equivalent covariance matrix to estimate the DOAs with low computational complexity. Numerical simulations verify the superior performance of the proposed algorithm, especially under a low signal-to-noise ratio(SNR) environment.
文摘由于传统的欧式空间方法无法有效反映协方差矩阵之间的差异,而导致信息损失,为了解决这一问题,提出了一种基于詹森-布雷格曼洛格德特散度(Jensen-Bregman LogDet divergence)的阵列波达方向(Direction of Arrival,DOA)估计方法,将目标方位估计问题转化为矩阵流形上两点间的几何距离问题,揭示了方位估计与黎曼空间矩阵流形的映射规律,从而得到了几何距离最小值处对应的角度即为目标入射角度的结论,并通过构建两个强鲁棒性的矩阵流形,完成了矩阵信息几何DOA估计理论模型的建立。通过模拟仿真与实测数据对所新方法进行了验证。验证结果表明:与现有的最小方差无失真响应算法和多信号分类算法相比,新方法在低信噪比环境下拥有更好的估计精度;新方法的应用具有一定的实际意义和应用前景,可以为海洋防御及民用领域中的水下目标方位估计等提供坚实的技术支持。
文摘针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条件,依据稀疏率和阵元数将孔径自适应分区,以阵列峰值旁瓣和孔径为约束,由双层嵌套循环迭代优化阵列麦克风数量和位置,获得更低的阵列峰值旁瓣电平。数值仿真和实验结果表明,根据该方法获得的49.5λ孔径、23%稀疏率的稀疏阵列峰值旁瓣电平为-21.59 dB,主瓣宽度为1.03°,角度分辨率为1°,估计误差小于0.01。与其他方法对比,峰值旁瓣低1 d B,优化效率提升50%,由此可证明该方法的有效性和快速性。
基金supported by China National Science Foundations(Nos.62371225,62371227)。
文摘Sparse array design has significant implications for improving the accuracy of direction of arrival(DOA)estimation of non-circular(NC)signals.We propose an extended nested array with a filled sensor(ENAFS)based on the hole-filling strategy.Specifically,we first introduce the improved nested array(INA)and prove its properties.Subsequently,we extend the sum-difference coarray(SDCA)by adding an additional sensor to fill the holes.Thus the larger uniform degrees of freedom(uDOFs)and virtual array aperture(VAA)can be abtained,and the ENAFS is designed.Finally,the simulation results are given to verify the superiority of the proposed ENAFS in terms of DOF,mutual coupling and estimation performance.
文摘在高速铁路场景下,准确估计和跟踪无线电信号的波达方向(Direction of Arrival, DOA)能够有效提升无线通信服务质量.然而,高速移动的无线信道具有快速时变特性,对信号处理的速度和准确性提出了更高的挑战.针对传统的基于信号子空间的DOA估计算法,由于巨大的计算量而无法应用于高速铁路快速时变系统中进行DOA跟踪的问题,提出了基于卡尔曼滤波和正交压缩近似投影子空间跟踪(Kalman Filter-Orthonormal Projection Approximation and Subspace Tracking of deflation, K-OPASTd)的DOA算法.首先,搭建基于云平台的铁路信号动态测向系统;然后,建立列车接收信号模型,提出K-OPASTd算法对DOA进行动态跟踪;最后,将本文提出的算法与OPASTd算法所得到的估计角度的均方根误差进行仿真对比实验.研究结果表明:信噪比均为10dB时,本文所提算法的均方根误差比OPASTd算法低约60%;阵元均为20时,K-OPASTd算法的均方根误差比OPASTd算法低约80%.
文摘Mobile location using angle of arrival (AOA) measurements has received considerable attention. This paper presents an approximation of maximum likelihood estimator (MLE) for localizing a source based on AOA measurements. By introducing an intermediate variable, the nonlinear equations relating AOA estimates can be transformed into a set of equations which are linear in the unknown parameters. It is an approximate realization of the MLE. Simulations show that the proposed algorithm outperforms the previous contribution.
文摘提出一种基于声源空间域分布稀疏和声学矢量传感器“8”字形指向特性的波达方向(Direction of Arrival,DOA)估计方法。该方法在通过最优化稀疏算法选择与声源方向最匹配的向量的同时,借助声学矢量传感器中组合声矢量信号独特的“8”字形指向性,进一步提升了单个声学矢量传感器测向的准确度。实验结果表明,所提方法在宽带信号短时、小快拍情形下具备较强的健壮性,能够有效抑制噪声并准确获得噪声源的空间位置,为后续的噪声控制与处理提供关键的基础信息,有助于提高噪声处理的性能和效果。