Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various f...Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various factors affect roots reinforcement during seismic loading have rarely been studied.The objective is to conduct a series of cyclic direct simple shear tests and DEM numerical simulation to investigate the cyclic behaviour of rooted loess.The effects of initial static shear stress and loading frequency on the cyclic resistance of root-soil composites were first investigated.After that,cyclic direct simple shear simulations at constant volume were carried out based on the discrete element method(PFC^(3D))to investigate the effects of root geome-try,mechanical traits and root-soil bond strength on the cyclic strength of rooted loess.It was discovered that the roots could effectively improve the cyclic resistance of loess.The cyclic resistance of the root-soil composite decreases with the increase of the initial shear stress,then increases,and improves with the increase of the frequency.The simulation result show that increases in root elastic modulus and root-soil interfacial bond strength can all enhance the cyclic resistance of root-soil composites,and the maximum cyclic resistance of the root-soil composite was obtained when the initial inclination angle of the root system was 90°.展开更多
The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. Acco...The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. According to the results of laboratory direct shear test on the remolded samples, the soil particle parameters of numerical model based on in-situ particle size cumulative curves and 3D granular discrete element method were determined. Then, numerical experiments on different lithology, stone content and gradation composition were conducted. The results show that it is not a flat surface but a shear band that yields in the sample. The curve of particle velocity vs distance from the designed shear surface of test model that is taken as a datum plane in the vertical section of sample shows in "S" shape. The shear disturbance area is about twice the maximum diameter of stone blocks. The greater the stiffness of stone is, the rougher the shear surface is. The shear strength of outwash deposits is largely controlled by lithology and stone content, and the bite force between stone blocks is the root reason of larger friction angle. It is also shown that strain hardening and low shear dilatancy occur under high confining pressure as well as possibility of shear shrinkage. But it is easy to behave shear dilatation and strain softening under low confining pressure. The relationship between particle frictional coefficient and stone content presents an approximately quadratic parabola increase. The strain energy first increases and then drops with the increase of frictional energy. The cohesion increases with soil stiffness increasing but decreases with stone stiffness increasing. Numerical results are consistent with the laboratory test results of remolded samples, which indicate that this method can be a beneficial supplement to determine the parameters of engineering deposit bodies.展开更多
The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of tal...The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.展开更多
The tests on the shear property of geocell reinforced soils were carried out by using large-scale direct shear equipment with shear-box-dimensions of 500 mm×500 mm×400 mm (length×width×height). Thr...The tests on the shear property of geocell reinforced soils were carried out by using large-scale direct shear equipment with shear-box-dimensions of 500 mm×500 mm×400 mm (length×width×height). Three types of specimens, silty gravel soil, geocell reinforced silty gravel soil and geocell reinforced cement stabilizing silty gravel soil were used to investigate the shear stress-displacement behavior, the shear strength and the strengthening mechanism of geocell reinforced soils. The comparisons of large-scale shear test with triaxial compression test for the same type of soil were conducted to evaluate the influences of testing method on the shear strength as well. The test results show that the unreinforced soil and geocell reinforced soil give similar nonlinear features on the behavior of shear stress and displacement. The geocell reinforced cement stabilizing soil has a quasi-elastic characteristic in the case of normal stress coming up to 1.0 GPa. The tests with the reinforcement of geocell result in an increase of 244% in cohesion, and the tests with the geocell and the cement stabilization result in an increase of 10 times in cohesion compared with the unreinforced soil. The friction angle does not change markedly. The geocell reinforcement develops a large amount of cohesion on the shear strength of soils.展开更多
Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting perfo...Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting performance.In this study,a new artificial molding method based on 3D scanning and printing technology was first proposed to prepare bolted joints with an inclined bolt.Then,the effects of the bolt inclination angle and boundary conditions on the shear behavior and failure characteristic of bolted joints were addressed by conducting direct shear tests under both CNL and CNS conditions.Results indicated that rock bolt could significantly improve the shear behavior of rock joints,especially in the post-yield deformation region.With the increase of bolt inclination angle,both the maximum shear stress and the maximum friction coefficient increased first and then decreased,while the maximum normal displacement decreased monotonously.Compared with CNL conditions,the maximum shear stress was larger,whereas the maximum normal displacement and friction coefficient were smaller under the CNS conditions.Furthermore,more asperity damage was observed under the CNS conditions due to the increased normal stress on the shear plane.展开更多
The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sand...The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine.展开更多
Several groups of direct shear tests of Nanning expansive soil samples were carded out by improved direct shear apparatus. The results of the characteristics of the ultimate shear stress and residual shear stress at t...Several groups of direct shear tests of Nanning expansive soil samples were carded out by improved direct shear apparatus. The results of the characteristics of the ultimate shear stress and residual shear stress at the interface of expansive soil-structure are presented as follows: linear relation can approximately reflect changes between the both shear stress and the three factors: vertical load, water content and dry density, just different degrees from each other; increasing the vertical load from 25 kPa to 100 kPa (up by 300%) can cause the average increase of ultimate shear stress from 58% (for samples with 1.61 g/cm^3) to 80% (for samples with 1.76 g/cm^3), and an close average increase of 180% for the residual shear stress; increasing the water content from 14.1% to 20.8% (up by 47.5%) can cause the average decrease of the ultimate shear stress from 40% (for samples with 25 kPa) to 80% (for samples with 100 kPa), and the average decrease from 25% (for samples with 25 kPa) to 30% (for samples with 100 kPa) for the residual shear stress; increasing the dry density from 1.61 g/cm^3 to 1.76 g/cm^3 (up by 9.3%) can cause the average increase of ultimate shear stress from 92% (for samples with 25 kPa) to 138% (for samples with 100 kPa), and an average increase of 4% for the residual shear stress. Sensitive analysis was further made to explain reasons causing the differences of the both shear stress induced by the three factors.展开更多
A filter cake is often formed between soil and concrete during casting concrete in the ground,such as constructions of diaphragm walls and bored piles.The present study aims to investigate the effect of the filter cak...A filter cake is often formed between soil and concrete during casting concrete in the ground,such as constructions of diaphragm walls and bored piles.The present study aims to investigate the effect of the filter cake on the shear behavior of the sand-concrete pile interface.A series of sand-concrete interface direct shear tests were performed with a large-direct shear apparatus while considering different roughness(I=0,10,20 and 30 mm)and filter cake thickness(Δh=0,5 and 10 mm).For a smooth interface without a filter cake,the shear stress-horizontal displacement curves showed a“softening”response.The peak shear strength and friction angle decreased exponentially with increasing theΔh.Whereas,for a rough interface withΔh=5 or 10 mm,the shear stress-horizontal displacement curves presented a“hardening”response.The peak strength,as well as friction angle,decreased linearly with increasing theΔh.Moreover,a critical roughness I_(cr)of 10 mm was observed in the tests without a filter cake.The interface shear strength initially increased with increasing I but gradually decreased when the I exceeded I_(cr).In addition,the filter cake could reduce the roughness sensitivity on shear strength.展开更多
Based on the interface shear tests,the macro-and meso-mechanical behaviors of interaction between coral sand and different structure surfaces are studied,in which CCD camera is used to capture digital images to analyz...Based on the interface shear tests,the macro-and meso-mechanical behaviors of interaction between coral sand and different structure surfaces are studied,in which CCD camera is used to capture digital images to analyze the evolution of the interaction band and a particle analysis apparatus is applied to studying the distribution characteristics of particle morphology.This study proposes four-stage evolution process based on the shear stress−strain curve.During the shear process,coral sand particles slide and rotate within the interaction band,causing the changes in shear stress and vertical displacement.In addition,the effects of structure surface roughness on shear strength,volume change and particle breakage are illustrated that the greater the roughness of slabs is,the larger the shear stress is,the more obvious the contraction effect is and the more the particles break.Furthermore,the change in particle’s 3D morphology during the breakage will change not only their size but also other morphological characteristics with convergence and self-organization.展开更多
文摘Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various factors affect roots reinforcement during seismic loading have rarely been studied.The objective is to conduct a series of cyclic direct simple shear tests and DEM numerical simulation to investigate the cyclic behaviour of rooted loess.The effects of initial static shear stress and loading frequency on the cyclic resistance of root-soil composites were first investigated.After that,cyclic direct simple shear simulations at constant volume were carried out based on the discrete element method(PFC^(3D))to investigate the effects of root geome-try,mechanical traits and root-soil bond strength on the cyclic strength of rooted loess.It was discovered that the roots could effectively improve the cyclic resistance of loess.The cyclic resistance of the root-soil composite decreases with the increase of the initial shear stress,then increases,and improves with the increase of the frequency.The simulation result show that increases in root elastic modulus and root-soil interfacial bond strength can all enhance the cyclic resistance of root-soil composites,and the maximum cyclic resistance of the root-soil composite was obtained when the initial inclination angle of the root system was 90°.
基金Project(2011CB013504) supported by the National Basic Research Program of ChinaProjects(50911130366, 11172090) supported by the National Natural Science Foundation of ChinaProject supported by Central University Basic Research Special Fund, China
文摘The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. According to the results of laboratory direct shear test on the remolded samples, the soil particle parameters of numerical model based on in-situ particle size cumulative curves and 3D granular discrete element method were determined. Then, numerical experiments on different lithology, stone content and gradation composition were conducted. The results show that it is not a flat surface but a shear band that yields in the sample. The curve of particle velocity vs distance from the designed shear surface of test model that is taken as a datum plane in the vertical section of sample shows in "S" shape. The shear disturbance area is about twice the maximum diameter of stone blocks. The greater the stiffness of stone is, the rougher the shear surface is. The shear strength of outwash deposits is largely controlled by lithology and stone content, and the bite force between stone blocks is the root reason of larger friction angle. It is also shown that strain hardening and low shear dilatancy occur under high confining pressure as well as possibility of shear shrinkage. But it is easy to behave shear dilatation and strain softening under low confining pressure. The relationship between particle frictional coefficient and stone content presents an approximately quadratic parabola increase. The strain energy first increases and then drops with the increase of frictional energy. The cohesion increases with soil stiffness increasing but decreases with stone stiffness increasing. Numerical results are consistent with the laboratory test results of remolded samples, which indicate that this method can be a beneficial supplement to determine the parameters of engineering deposit bodies.
基金Project(2013BAB06B00) supported by the National Key Technology R&D Programof ChinaProject(2011CB013504) supported by the National Basic Research Program of ChinaProject(50911130366) supported by the National Natural Science Foundation of China
文摘The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.
基金Project(40672178) supported by the National Natural Science Foundation of ChinaProject(2004844009) supported by the Chinese Scholarship Council
文摘The tests on the shear property of geocell reinforced soils were carried out by using large-scale direct shear equipment with shear-box-dimensions of 500 mm×500 mm×400 mm (length×width×height). Three types of specimens, silty gravel soil, geocell reinforced silty gravel soil and geocell reinforced cement stabilizing silty gravel soil were used to investigate the shear stress-displacement behavior, the shear strength and the strengthening mechanism of geocell reinforced soils. The comparisons of large-scale shear test with triaxial compression test for the same type of soil were conducted to evaluate the influences of testing method on the shear strength as well. The test results show that the unreinforced soil and geocell reinforced soil give similar nonlinear features on the behavior of shear stress and displacement. The geocell reinforced cement stabilizing soil has a quasi-elastic characteristic in the case of normal stress coming up to 1.0 GPa. The tests with the reinforcement of geocell result in an increase of 244% in cohesion, and the tests with the geocell and the cement stabilization result in an increase of 10 times in cohesion compared with the unreinforced soil. The friction angle does not change markedly. The geocell reinforcement develops a large amount of cohesion on the shear strength of soils.
基金Project(U1865203)supported by the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of ChinaProject(51279201)supported by the National Natural Science Foundation of ChinaProjects(2019YFC0605103,2019YFC0605100)supported by the National Key R&D Program of China。
文摘Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting performance.In this study,a new artificial molding method based on 3D scanning and printing technology was first proposed to prepare bolted joints with an inclined bolt.Then,the effects of the bolt inclination angle and boundary conditions on the shear behavior and failure characteristic of bolted joints were addressed by conducting direct shear tests under both CNL and CNS conditions.Results indicated that rock bolt could significantly improve the shear behavior of rock joints,especially in the post-yield deformation region.With the increase of bolt inclination angle,both the maximum shear stress and the maximum friction coefficient increased first and then decreased,while the maximum normal displacement decreased monotonously.Compared with CNL conditions,the maximum shear stress was larger,whereas the maximum normal displacement and friction coefficient were smaller under the CNS conditions.Furthermore,more asperity damage was observed under the CNS conditions due to the increased normal stress on the shear plane.
基金Project (2007CB714006) supported by the National Basic Research Program of China
文摘The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine.
基金Projects(50378097 50678177) supported by the National Natural Science Foundation of ChinaProject (01JJY3043) supported by the Natural Science Foundation of Hunan Province, China
文摘Several groups of direct shear tests of Nanning expansive soil samples were carded out by improved direct shear apparatus. The results of the characteristics of the ultimate shear stress and residual shear stress at the interface of expansive soil-structure are presented as follows: linear relation can approximately reflect changes between the both shear stress and the three factors: vertical load, water content and dry density, just different degrees from each other; increasing the vertical load from 25 kPa to 100 kPa (up by 300%) can cause the average increase of ultimate shear stress from 58% (for samples with 1.61 g/cm^3) to 80% (for samples with 1.76 g/cm^3), and an close average increase of 180% for the residual shear stress; increasing the water content from 14.1% to 20.8% (up by 47.5%) can cause the average decrease of the ultimate shear stress from 40% (for samples with 25 kPa) to 80% (for samples with 100 kPa), and the average decrease from 25% (for samples with 25 kPa) to 30% (for samples with 100 kPa) for the residual shear stress; increasing the dry density from 1.61 g/cm^3 to 1.76 g/cm^3 (up by 9.3%) can cause the average increase of ultimate shear stress from 92% (for samples with 25 kPa) to 138% (for samples with 100 kPa), and an average increase of 4% for the residual shear stress. Sensitive analysis was further made to explain reasons causing the differences of the both shear stress induced by the three factors.
基金Projects(51978672,51878671)supported by the National Natural Science Foundation of ChinaProject(2017zzts159)supported by the Graduate Innovation Program of Central South University,China+1 种基金Project(HNTY2021K09)supported by the Open Research Project of the Hunan Tieyuan Civil Engineering Testing Co.Ltd.,China。
文摘A filter cake is often formed between soil and concrete during casting concrete in the ground,such as constructions of diaphragm walls and bored piles.The present study aims to investigate the effect of the filter cake on the shear behavior of the sand-concrete pile interface.A series of sand-concrete interface direct shear tests were performed with a large-direct shear apparatus while considering different roughness(I=0,10,20 and 30 mm)and filter cake thickness(Δh=0,5 and 10 mm).For a smooth interface without a filter cake,the shear stress-horizontal displacement curves showed a“softening”response.The peak shear strength and friction angle decreased exponentially with increasing theΔh.Whereas,for a rough interface withΔh=5 or 10 mm,the shear stress-horizontal displacement curves presented a“hardening”response.The peak strength,as well as friction angle,decreased linearly with increasing theΔh.Moreover,a critical roughness I_(cr)of 10 mm was observed in the tests without a filter cake.The interface shear strength initially increased with increasing I but gradually decreased when the I exceeded I_(cr).In addition,the filter cake could reduce the roughness sensitivity on shear strength.
基金Project(2017YFC0805406)supported by the National Key Research and Development Program of ChinaProjects(51879142,51679123)supported by the National Natural Science Foundation of ChinaProject(2020-KY-04)supported by the Research Fund Program of the State Key Laboratory of Hydroscience and Engineering,China。
文摘Based on the interface shear tests,the macro-and meso-mechanical behaviors of interaction between coral sand and different structure surfaces are studied,in which CCD camera is used to capture digital images to analyze the evolution of the interaction band and a particle analysis apparatus is applied to studying the distribution characteristics of particle morphology.This study proposes four-stage evolution process based on the shear stress−strain curve.During the shear process,coral sand particles slide and rotate within the interaction band,causing the changes in shear stress and vertical displacement.In addition,the effects of structure surface roughness on shear strength,volume change and particle breakage are illustrated that the greater the roughness of slabs is,the larger the shear stress is,the more obvious the contraction effect is and the more the particles break.Furthermore,the change in particle’s 3D morphology during the breakage will change not only their size but also other morphological characteristics with convergence and self-organization.