For the characterization of the behaviors of a metal material in events like expanding warheads, it is necessary to know its strength and ductility at high strain rates, around 104e105/s. The flyer plate impact testin...For the characterization of the behaviors of a metal material in events like expanding warheads, it is necessary to know its strength and ductility at high strain rates, around 104e105/s. The flyer plate impact testing produces the uniform stress and strain rates but the testing is expensive. The Taylor test is relatively inexpensive but produces non-uniform stress and strain fields, and the results are not so easily inferred for material modeling. In the split-Hopkinson bar(SHB), which may be used in compression, tension and torsion testing, the strain rates never exceeds 103/s. In the present work, we use the expanding ring test where the strain rate is 104e105/s. A streak camera is used to examine the expanding ring velocity, and a water tank is used to collect the fragments. The experimental results are compared with the numerical simulations using the hydrocodes AUTODYN, IMPETUS Afea and a regularized smooth particle(RSPH) software. The number of fragments increases with the increase in the expansion velocity of the rings. The number of fragments is similar to the experimental results. The RSPH software shows much the same results as the AUTODYN where the Lagrangian solver is used for the ring. The IMPETUS Afea solver shows a somewhat different fragmentation characteristic due to the node splitting algorithm that induces pronounced tensile splitting.展开更多
Based on the parametric analysis of the expanding zone of the vacuum dust suction mouth,the flow in the vacuum dust suction mouth was simulated by computational fluid dynamics(CFD)software,Fluent.The effects of the ex...Based on the parametric analysis of the expanding zone of the vacuum dust suction mouth,the flow in the vacuum dust suction mouth was simulated by computational fluid dynamics(CFD)software,Fluent.The effects of the expanding zone parameters on flow simulation were analyzed.The results show that simulation effects depend on threshold values of the expanding zone parameters of the dust suction mouth,and the threshold values of the expanding zone can be obtained according to the different structures of the vacuum dust suction mouth and be selected as the geometric parameters in calculating,and also corners of the expanding zone make unobvious difference in calculation accuracy and in computational efficiency compared with no corner.The simulation results provide practical guidance to the flow simulation on the dust suction mouth.展开更多
A one-dimensional theoretical model was adopted in this paper to describe and analyze the flow in an expanding RBCC(rocket based combined cycle)duct.It can be concluded that the expanding angle,heating amount and dist...A one-dimensional theoretical model was adopted in this paper to describe and analyze the flow in an expanding RBCC(rocket based combined cycle)duct.It can be concluded that the expanding angle,heating amount and distribution of heating play crucial roles on the thermal choking.They mainly influence the acceleration of flow,the position of choking throat and the total pressure loss.In order to fulfill the transition of subsonic flow to supersonic flow in the expanding RBCC duct,the heating amount has to change from a bigger value to a smaller one along the duct.When the thermal choking occurs in the RBCC duct,the moderate expanding angle,proper heating amount and distribution of heating are necessary for the best performance of RBCC combustor.Adopting the RBCC duct with smaller expanding angles anterior and bigger expanding angles posterior has positive effects on the thermal choking and flexibility of selecting heating method,and can restrain the negative effect of the combustion on the inlet also.展开更多
Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm...Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm,electrodes,bipolar plates and end plates,etc.The existing industrial bipolar plate channel is concave-convex structure,which is manufactured by complicated and high-cost mold punching.This structure still results in uneven electrolyte flow and low current density in the electrolytic cell,further increasing in energy consumption and cost of AWE.Thereby,in this article,the electrochemical and flow model is firstly constructed,based on the existing industrial concave and convex flow channel structure of bipolar plate,to study the current density,electrolyte flow and bubble distribution in the electrolysis cell.The reliability of the model was verified by comparison with experimental data in literature.Among which,the electrochemical current density affects the bubble yield,on the other hand,the generated bubbles cover the electrode surface,affecting the active specific surface area and ohmic resistance,which in turn affects the electrochemical reaction.The result indicates that the flow velocity near the bottom of the concave ball approaches zero,while the flow velocity on the convex ball surface is significantly higher.Additionally,vortices are observed within the flow channel structure,leading to an uneven distribution of electrolyte.Next,modelling is used to optimize the bipolar plate structure of AWE by simulating the electrochemistry and fluid flow performances of four kinds of structures,namely,concave and convex,rhombus,wedge and expanded mesh,in the bipolar plate of alkaline water electrolyzer.The results show that the expanded mesh channel structure has the largest current density of 3330 A/m^(2)and electrolyte flow velocity of 0.507 m/s in the electrolytic cell.Under the same current density,the electrolytic cell with the expanded mesh runner structure has the smallest potential and energy consumption.This work provides a useful guide for the comprehensive understanding and optimization of channel structures,and a theoretical basis for the design of large-scale electrolyzer.展开更多
文摘For the characterization of the behaviors of a metal material in events like expanding warheads, it is necessary to know its strength and ductility at high strain rates, around 104e105/s. The flyer plate impact testing produces the uniform stress and strain rates but the testing is expensive. The Taylor test is relatively inexpensive but produces non-uniform stress and strain fields, and the results are not so easily inferred for material modeling. In the split-Hopkinson bar(SHB), which may be used in compression, tension and torsion testing, the strain rates never exceeds 103/s. In the present work, we use the expanding ring test where the strain rate is 104e105/s. A streak camera is used to examine the expanding ring velocity, and a water tank is used to collect the fragments. The experimental results are compared with the numerical simulations using the hydrocodes AUTODYN, IMPETUS Afea and a regularized smooth particle(RSPH) software. The number of fragments increases with the increase in the expansion velocity of the rings. The number of fragments is similar to the experimental results. The RSPH software shows much the same results as the AUTODYN where the Lagrangian solver is used for the ring. The IMPETUS Afea solver shows a somewhat different fragmentation characteristic due to the node splitting algorithm that induces pronounced tensile splitting.
基金Project(2012zzts082)supported by the Fundamental Research Funds of Central South University,ChinaProject(02JJY2005)supported by the Natural Science Foundation of Hunan Province,ChinaProject(20130843023)supported by China Scholarship Council
文摘Based on the parametric analysis of the expanding zone of the vacuum dust suction mouth,the flow in the vacuum dust suction mouth was simulated by computational fluid dynamics(CFD)software,Fluent.The effects of the expanding zone parameters on flow simulation were analyzed.The results show that simulation effects depend on threshold values of the expanding zone parameters of the dust suction mouth,and the threshold values of the expanding zone can be obtained according to the different structures of the vacuum dust suction mouth and be selected as the geometric parameters in calculating,and also corners of the expanding zone make unobvious difference in calculation accuracy and in computational efficiency compared with no corner.The simulation results provide practical guidance to the flow simulation on the dust suction mouth.
文摘A one-dimensional theoretical model was adopted in this paper to describe and analyze the flow in an expanding RBCC(rocket based combined cycle)duct.It can be concluded that the expanding angle,heating amount and distribution of heating play crucial roles on the thermal choking.They mainly influence the acceleration of flow,the position of choking throat and the total pressure loss.In order to fulfill the transition of subsonic flow to supersonic flow in the expanding RBCC duct,the heating amount has to change from a bigger value to a smaller one along the duct.When the thermal choking occurs in the RBCC duct,the moderate expanding angle,proper heating amount and distribution of heating are necessary for the best performance of RBCC combustor.Adopting the RBCC duct with smaller expanding angles anterior and bigger expanding angles posterior has positive effects on the thermal choking and flexibility of selecting heating method,and can restrain the negative effect of the combustion on the inlet also.
基金financially supported by the National Natural Science Foundation of China(No.52074130)the Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality,Ministry of Education。
文摘Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm,electrodes,bipolar plates and end plates,etc.The existing industrial bipolar plate channel is concave-convex structure,which is manufactured by complicated and high-cost mold punching.This structure still results in uneven electrolyte flow and low current density in the electrolytic cell,further increasing in energy consumption and cost of AWE.Thereby,in this article,the electrochemical and flow model is firstly constructed,based on the existing industrial concave and convex flow channel structure of bipolar plate,to study the current density,electrolyte flow and bubble distribution in the electrolysis cell.The reliability of the model was verified by comparison with experimental data in literature.Among which,the electrochemical current density affects the bubble yield,on the other hand,the generated bubbles cover the electrode surface,affecting the active specific surface area and ohmic resistance,which in turn affects the electrochemical reaction.The result indicates that the flow velocity near the bottom of the concave ball approaches zero,while the flow velocity on the convex ball surface is significantly higher.Additionally,vortices are observed within the flow channel structure,leading to an uneven distribution of electrolyte.Next,modelling is used to optimize the bipolar plate structure of AWE by simulating the electrochemistry and fluid flow performances of four kinds of structures,namely,concave and convex,rhombus,wedge and expanded mesh,in the bipolar plate of alkaline water electrolyzer.The results show that the expanded mesh channel structure has the largest current density of 3330 A/m^(2)and electrolyte flow velocity of 0.507 m/s in the electrolytic cell.Under the same current density,the electrolytic cell with the expanded mesh runner structure has the smallest potential and energy consumption.This work provides a useful guide for the comprehensive understanding and optimization of channel structures,and a theoretical basis for the design of large-scale electrolyzer.