The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of tal...The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.展开更多
The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although vari...The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although various modifications of heat sources in the aspect of absorption process of laser by materials have been purposed, the distribution of laser power density(DLPD) in MHS is still modeled theoretically. However, in the actual situations of laser processing, the DLPD is definitely different from the ideal models. So, it is indispensable to build MHS using actual DLPD to improve the accuracy of simulation results. Besides, an automatic modeling method will be benefit to simplify the tedious pre-processing of simulations. This paper presents a modeling method and corresponding algorithm to model heat source using measured DLPD. This algorithm automatically processes original data to get modeling parameters and provides a step MHS combining with absorption models. Simulations and experiments of heat transfer in steel plates irradiated by laser prove the mothed and the step MHS. Moreover, the investigations of laser induced thermal-crack propagation in glass highlight the signification of modeling heat source based on actual DLPD and demonstrate the enormous application of this method in the simulation of laser processing.展开更多
Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasti...Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasting and casting blast parameters determination which have influence on the effect of casting blast have been researched with the combination of the ballistic theory and experience in mines. The integrated digital processing system of casting blast was developed in order to simplify the design process of casting blast, improve working efficiency and veracity of design result and comprehensively adopt the software programming method and the theory of casting blast. This system has achieved five functions, namely, the 3D visualization graphics management, the intelligent management of geological information, the intelligent design of casting blast, the analysis and prediction of the blasting effect and the automatic output of the design results. Long-term application in opencast coal mines has shown that research results can not only reduce the specific explosive consumption and improve the blasting effect, but also have high value of popularization and application.展开更多
Three-dimensional (3-D) matched filtering has been suggested as a powerful processing technique for detecting weak, moving IR point target immersed in a noisy field. Based on the theory of the 3-D matched filtering an...Three-dimensional (3-D) matched filtering has been suggested as a powerful processing technique for detecting weak, moving IR point target immersed in a noisy field. Based on the theory of the 3-D matched filtering and the optimal linear processing, the optimal point target detector is being analyzed in this paper. The performance of the detector is introduced in detail. The results provide a standard reference to evaluate the performance of any other point target detection algorithms.展开更多
A high-precision shape detecting system of cold rolling strip is developed to meet industrial application, which mainly consists of the shape detecting roller, the collecting ring, the digital signal processing (DSP...A high-precision shape detecting system of cold rolling strip is developed to meet industrial application, which mainly consists of the shape detecting roller, the collecting ring, the digital signal processing (DSP) shape signal processing board and the shape control model. Based on the shape detecting principle, the shape detecting roller is designed with a new integral structure for improving the precision of shape detecting and avoiding scratching strip surface. Based on the DSP technology, the DSP shape signal processing circuit board is designed and embedded in the shape detecting system for the reliability and stability of shape signal processing. The shape detecting system was successfully used in Angang 1 250 mm HC 6-high reversible cold rolling mill. The precision of shape detecting is 0.2 I and the shape deviation is controlled within 6 1 after the close loop shape control is input.展开更多
This article deals with two important issues in digital filter implementation: roundoff noise and limit cycles. A novel class of robust state-space realizations, called normal realizations, is derived and characteriz...This article deals with two important issues in digital filter implementation: roundoff noise and limit cycles. A novel class of robust state-space realizations, called normal realizations, is derived and characterized. It is seen that these realizations are free of limit cycles. Another interesting property of the normal realizations is that they yield a minimal error propagation gain. The optimal realization problem, defined as to find those normal realizations that minimize roundoff noise gain, is formulated and solved analytically. A design example is presented to demonstrate the behavior of the optimal normal realizations and to compare them with several well-known digital filter realizations in terms of minimizing the roundoff noise and the error propagation.展开更多
This paper describes a modified speed-sensorless control for induction motor (IM) based on space vector pulse width modulation and neural network. An Elman ANN method to identify the IM speed is proposed, with IM para...This paper describes a modified speed-sensorless control for induction motor (IM) based on space vector pulse width modulation and neural network. An Elman ANN method to identify the IM speed is proposed, with IM parameters employed as associated elements. The BP algorithm is used to provide an adaptive estimation of the motor speed. The effectiveness of the proposed method is verified by simulation results. The implementation on TMS320F240 fixed DSP is provided.展开更多
In order to establish a new method for measuring the dimensions of coarse aggregates, five different-size flat and elongated (F&E) coarse aggregates were glued into two specimens by epoxy resin, respectively, and ...In order to establish a new method for measuring the dimensions of coarse aggregates, five different-size flat and elongated (F&E) coarse aggregates were glued into two specimens by epoxy resin, respectively, and slice images were obtained by X-ray CT, then the aggregates were extracted by the fuzzy c-means clustering algorithm. Attributions of the particle on different cross-sections were determined by the ‘overlap area method’. And unified three-dimensional Cartesian coordinate system was established based on continuous slice images. The coefficient values of spherical harmonics descriptor representing particles surface profile were gained, then each scanned particle was represented by 60×120 discrete points conformably with spherical harmonics descriptor. The chord length and direction angles were determined by the calculation. With the major axis (L) and orthogonal axis (W and T), the calculated results were compared with those measured by caliper. It is concluded that the new L, W, and T dimension measuring method is able to take the place of the present manual measurement.展开更多
基金Project(2013BAB06B00) supported by the National Key Technology R&D Programof ChinaProject(2011CB013504) supported by the National Basic Research Program of ChinaProject(50911130366) supported by the National Natural Science Foundation of China
文摘The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.
基金Project(2021YFF0500200) supported by the National Key R&D Program of ChinaProject(52105437) supported by the National Natural Science Foundation of China+1 种基金Project(202006120184) supported by the Heilongjiang Provincial Postdoctoral Science Foundation,ChinaProject(LBH-Z20054) supported by the China Scholarship Council。
文摘The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although various modifications of heat sources in the aspect of absorption process of laser by materials have been purposed, the distribution of laser power density(DLPD) in MHS is still modeled theoretically. However, in the actual situations of laser processing, the DLPD is definitely different from the ideal models. So, it is indispensable to build MHS using actual DLPD to improve the accuracy of simulation results. Besides, an automatic modeling method will be benefit to simplify the tedious pre-processing of simulations. This paper presents a modeling method and corresponding algorithm to model heat source using measured DLPD. This algorithm automatically processes original data to get modeling parameters and provides a step MHS combining with absorption models. Simulations and experiments of heat transfer in steel plates irradiated by laser prove the mothed and the step MHS. Moreover, the investigations of laser induced thermal-crack propagation in glass highlight the signification of modeling heat source based on actual DLPD and demonstrate the enormous application of this method in the simulation of laser processing.
基金Project supported by the Fundamental Research Funds for the Central Universities,China
文摘Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasting and casting blast parameters determination which have influence on the effect of casting blast have been researched with the combination of the ballistic theory and experience in mines. The integrated digital processing system of casting blast was developed in order to simplify the design process of casting blast, improve working efficiency and veracity of design result and comprehensively adopt the software programming method and the theory of casting blast. This system has achieved five functions, namely, the 3D visualization graphics management, the intelligent management of geological information, the intelligent design of casting blast, the analysis and prediction of the blasting effect and the automatic output of the design results. Long-term application in opencast coal mines has shown that research results can not only reduce the specific explosive consumption and improve the blasting effect, but also have high value of popularization and application.
文摘Three-dimensional (3-D) matched filtering has been suggested as a powerful processing technique for detecting weak, moving IR point target immersed in a noisy field. Based on the theory of the 3-D matched filtering and the optimal linear processing, the optimal point target detector is being analyzed in this paper. The performance of the detector is introduced in detail. The results provide a standard reference to evaluate the performance of any other point target detection algorithms.
基金Foundation item: Project(2009AA04Z143) supported by the National High Technology Research and Development Program of ChinaProject (E2011203004) supported by Natural Science Foundation of Hebei Province, ChinaProjects(2011BAF15B03, 2011BAF15B02) supported by the National Science Plan of China
文摘A high-precision shape detecting system of cold rolling strip is developed to meet industrial application, which mainly consists of the shape detecting roller, the collecting ring, the digital signal processing (DSP) shape signal processing board and the shape control model. Based on the shape detecting principle, the shape detecting roller is designed with a new integral structure for improving the precision of shape detecting and avoiding scratching strip surface. Based on the DSP technology, the DSP shape signal processing circuit board is designed and embedded in the shape detecting system for the reliability and stability of shape signal processing. The shape detecting system was successfully used in Angang 1 250 mm HC 6-high reversible cold rolling mill. The precision of shape detecting is 0.2 I and the shape deviation is controlled within 6 1 after the close loop shape control is input.
基金the National Nature Science Foundation of China (60774021)
文摘This article deals with two important issues in digital filter implementation: roundoff noise and limit cycles. A novel class of robust state-space realizations, called normal realizations, is derived and characterized. It is seen that these realizations are free of limit cycles. Another interesting property of the normal realizations is that they yield a minimal error propagation gain. The optimal realization problem, defined as to find those normal realizations that minimize roundoff noise gain, is formulated and solved analytically. A design example is presented to demonstrate the behavior of the optimal normal realizations and to compare them with several well-known digital filter realizations in terms of minimizing the roundoff noise and the error propagation.
基金This project was supported by the National Natural Science Foundation of China (No. 69874086).
文摘This paper describes a modified speed-sensorless control for induction motor (IM) based on space vector pulse width modulation and neural network. An Elman ANN method to identify the IM speed is proposed, with IM parameters employed as associated elements. The BP algorithm is used to provide an adaptive estimation of the motor speed. The effectiveness of the proposed method is verified by simulation results. The implementation on TMS320F240 fixed DSP is provided.
基金Project(51038004) supported by the National Natural Science Foundation of ChinaProject(2009318000078) supported by the Western China Communications Construction and Technology Program, China
文摘In order to establish a new method for measuring the dimensions of coarse aggregates, five different-size flat and elongated (F&E) coarse aggregates were glued into two specimens by epoxy resin, respectively, and slice images were obtained by X-ray CT, then the aggregates were extracted by the fuzzy c-means clustering algorithm. Attributions of the particle on different cross-sections were determined by the ‘overlap area method’. And unified three-dimensional Cartesian coordinate system was established based on continuous slice images. The coefficient values of spherical harmonics descriptor representing particles surface profile were gained, then each scanned particle was represented by 60×120 discrete points conformably with spherical harmonics descriptor. The chord length and direction angles were determined by the calculation. With the major axis (L) and orthogonal axis (W and T), the calculated results were compared with those measured by caliper. It is concluded that the new L, W, and T dimension measuring method is able to take the place of the present manual measurement.