In modern terrain-following guidance it is an important index for flight vehicle to cruise about safely and normally. On the basis of a constructing method of digital surface model (DSM), the definition, classificatio...In modern terrain-following guidance it is an important index for flight vehicle to cruise about safely and normally. On the basis of a constructing method of digital surface model (DSM), the definition, classification and scale analysis of an isolated obstacle threatening flight safety of terrain-following guidance are made. When the interval of vertical-and cross-sections on DSM is 12. 5 m, the proportion of isolated obstacles to the data amount of DSM model to be loaded is optimal. The main factors influencing the lowest flying height in terrain-following guidance are analyzed, and a primary safe criterion of the lowest flying height over DSM model is proposed. According to their test errors, the lowest flying height over 1:10 000 DSM model can reach 40. 5 m^45. 0 m in terrain-following guidance. It is shown from the simulation results of a typical urban district that the proposed models and methods are reasonable and feasible.展开更多
In our previous studies, we demonstrated the usefulness of TanDEM-X interferometric bistatic mode with single polarization to obtain forest heights for the purposes of large area mapping. A key feature of our approach...In our previous studies, we demonstrated the usefulness of TanDEM-X interferometric bistatic mode with single polarization to obtain forest heights for the purposes of large area mapping. A key feature of our approach has been the use of a simplified Random Volume Over Ground(RVOG) model that locally estimates forest height. The model takes TanDEM-X interferometric coherence amplitude as an input and uses an external Digital Surface Model(DSM) to account for local slope variations due to terrain topography in order to achieve accurate forest height estimation. The selection of DSM for use as a local slope reference is essential, as an inaccurate DSM will result in less accurate terrain-correction and forest height estimation. In this paper, we assessed TanDEM-X height estimates associated with scale variations in different DSMs used in the model over a remote sensing supersite in Petawawa, Canada. The DSMs used for assessments and comparisons included ASTER GDEM, ALOS GDSM, airborne DRAPE DSM, Canadian DSM and TanDEM-X DSM. Airborne Laser Scanning(ALS) data were used as reference for terrain slope and forest height comparisons. The results showed that, with the exception of the ASTER GDEM, all DSMs were sufficiently accurate for the simplified RVOG model to provide a satisfactory estimate of stand-level forest height. When compared to the ALS 95th height percentile, the modeled forest heights had R2 values greater than 80% and Root-Mean-Square Errors(RMSE)less than 2 m. For a close similarity in slope estimation with the ALS reference, coverage across Canada and open data access, the 0.75 arc-second(20 m) resolution Canadian DSM was selected as a preferred choice for the simplified RVOG model to provide TanDEM-X height estimation in Canada.展开更多
基金This project was supported by the National Natural Science Foundation of China (60072009).
文摘In modern terrain-following guidance it is an important index for flight vehicle to cruise about safely and normally. On the basis of a constructing method of digital surface model (DSM), the definition, classification and scale analysis of an isolated obstacle threatening flight safety of terrain-following guidance are made. When the interval of vertical-and cross-sections on DSM is 12. 5 m, the proportion of isolated obstacles to the data amount of DSM model to be loaded is optimal. The main factors influencing the lowest flying height in terrain-following guidance are analyzed, and a primary safe criterion of the lowest flying height over DSM model is proposed. According to their test errors, the lowest flying height over 1:10 000 DSM model can reach 40. 5 m^45. 0 m in terrain-following guidance. It is shown from the simulation results of a typical urban district that the proposed models and methods are reasonable and feasible.
基金This work was supported by Natural Resources Canada and the Canadian Space Agency under Multisource Biomass GRIP and by the German Aerospace Centre for provision of TanDEM-X data。
文摘In our previous studies, we demonstrated the usefulness of TanDEM-X interferometric bistatic mode with single polarization to obtain forest heights for the purposes of large area mapping. A key feature of our approach has been the use of a simplified Random Volume Over Ground(RVOG) model that locally estimates forest height. The model takes TanDEM-X interferometric coherence amplitude as an input and uses an external Digital Surface Model(DSM) to account for local slope variations due to terrain topography in order to achieve accurate forest height estimation. The selection of DSM for use as a local slope reference is essential, as an inaccurate DSM will result in less accurate terrain-correction and forest height estimation. In this paper, we assessed TanDEM-X height estimates associated with scale variations in different DSMs used in the model over a remote sensing supersite in Petawawa, Canada. The DSMs used for assessments and comparisons included ASTER GDEM, ALOS GDSM, airborne DRAPE DSM, Canadian DSM and TanDEM-X DSM. Airborne Laser Scanning(ALS) data were used as reference for terrain slope and forest height comparisons. The results showed that, with the exception of the ASTER GDEM, all DSMs were sufficiently accurate for the simplified RVOG model to provide a satisfactory estimate of stand-level forest height. When compared to the ALS 95th height percentile, the modeled forest heights had R2 values greater than 80% and Root-Mean-Square Errors(RMSE)less than 2 m. For a close similarity in slope estimation with the ALS reference, coverage across Canada and open data access, the 0.75 arc-second(20 m) resolution Canadian DSM was selected as a preferred choice for the simplified RVOG model to provide TanDEM-X height estimation in Canada.