Objective:To investigate the reliability for kinetic assay of substance with background predicted by the integrated method using uricase reaction as model. Methods: Absorbance before uricase action (Δ0) was estim...Objective:To investigate the reliability for kinetic assay of substance with background predicted by the integrated method using uricase reaction as model. Methods: Absorbance before uricase action (Δ0) was estimated by extrapolation with given lag time of steady-state reaction. With Km fixed at 12.5μmol/L, background absorbance (Δb) was predicted by nonlinearly fitting integrated Michaelis-Menten equation to Candida utilis uricase reaction curve. Uric acid in reaction solution was determined by the difference (ΔA) between Δ0 and Δb. Results .Ab usually showed deviation 〈3% from direct assay with residual substrate done fifth of initial substrate for analysis. ΔA showed CV 〈5% with resistance to common interferences except xanthine, and it linearly responded to uric acid with slope consistent to the absorptivity of uric acid. The lower limit was 2.0 μmol/L and upper limit reached 30 μmol/L in reaction solution with data monitored within 8 min reaction at 0. 015 U/ml uricase. Preliminary application to serum and urine gave better precision than the direct equilibrium method without the removal of proteins before analysis. Conclusion .This kinetic method with background predicted by the integrated method was reliable for enzymatic analysis, and it showed resistance to common interferences and enhanced efficiency at much lower cost.展开更多
In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation...In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation range as well as the fact that the shape of the overburden deformation area will change with the excavation length are ignored.In this paper,an improved key stratum theory(IKS theory)was proposed by fixing these two shortcomings.Then,a WFZ height prediction method based on IKS theory was established and applied.First,the range of overburden involved in the analysis was determined according to the tensile stress distribution range above the goaf.Second,the key stratum in the overburden involved in the analysis was identified through IKS theory.Finally,the tendency of the WFZ to develop upward was determined by judging whether or not the identified key stratum will break.The proposed method was applied and verified in a mining case study,and the reasons for the differences in the development patterns between the WFZs in coalfields in Northwest and East China were also fully explained by this method.展开更多
Water content in output crude oil is hard to measure precisely because of wide range of dielectric coefficient of crude oil caused by injected dehydrating and demulsifying agents.The method to reduce measurement error...Water content in output crude oil is hard to measure precisely because of wide range of dielectric coefficient of crude oil caused by injected dehydrating and demulsifying agents.The method to reduce measurement error of water content in crude oil proposed in this paper is based on switching measuring ranges of on-line water content analyzer automatically.Measuring precision on data collected from oil field and analyzed by in-field operators can be impressively improved by using back propogation (BP) neural network to predict water content in output crude oil.Application results show that the difficulty in accurately measuring water-oil content ratio can be solved effectively through this combination of on-line measuring range automatic switching and real time prediction,as this method has been tested repeatedly on-site in oil fields with satisfactory prediction results.展开更多
Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.Howev...Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.展开更多
One of the greatest challenges in the design of a gun is to balance muzzle velocity and recoil,especially for guns on aircrafts and deployable vehicles.To resolve the conflict between gun power and recoil force,a conc...One of the greatest challenges in the design of a gun is to balance muzzle velocity and recoil,especially for guns on aircrafts and deployable vehicles.To resolve the conflict between gun power and recoil force,a concept of rarefaction wave gun(RAVEN)was proposed to significantly reduce the weapon recoil and the heat in barrel,while minimally reducing the muzzle velocity.The main principle of RAVEN is that the rarefaction wave will not reach the projectile base until the muzzle by delaying the venting time of an expansion nozzle at the breech.Developed on the RAVEN principle,the purpose of this paper is to provide an engineering method for predicting the performance of a low-recoil gun with front nozzle.First,a two-dimensional two-phase flow model of interior ballistic during the RAVEN firing cycle was established.Numerical simulation results were compared with the published data to validate the reliability and accuracy.Next,the effects of the vent opening times and locations were investigated to determine the influence rules on the performance of the RAVEN with front nozzle.Then according to the results above,simple nonlinear fitting formulas were provided to explain how the muzzle velocity and the recoil force change with the vent opening time and location.Finally,a better vent venting opening time corresponding to the vent location was proposed.The findings should make an important contribution to the field of engineering applications of the RAVEN.展开更多
Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts ...Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts for failure modes are obtained with the Borda method. The risk indexes of failure modes are derived from the Borda matrix. Based on the support vector machine (SVM), a casing life prediction model is established. In the prediction model, eight risk indexes are defined as input vectors and casing life is defined as the output vector. The ideal model parameters are determined with the training set from 19 wells with casing failure. The casing life prediction software is developed with the SVM model as a predictor. The residual life of 60 wells with casing failure is predicted with the software, and then compared with the actual casing life. The comparison results show that the casing life prediction software with the SVM model has high accuracy.展开更多
In this paper, an analogue correction method of errors (ACE) based on a complicated atmospheric model is further developed and applied to numerical weather prediction (NWP). The analysis shows that the ACE can eff...In this paper, an analogue correction method of errors (ACE) based on a complicated atmospheric model is further developed and applied to numerical weather prediction (NWP). The analysis shows that the ACE can effectively reduce model errors by combining the statistical analogue method with the dynamical model together in order that the information of plenty of historical data is utilized in the current complicated NWP model, Furthermore, in the ACE, the differences of the similarities between different historical analogues and the current initial state are considered as the weights for estimating model errors. The results of daily, decad and monthly prediction experiments on a complicated T63 atmospheric model show that the performance of the ACE by correcting model errors based on the estimation of the errors of 4 historical analogue predictions is not only better than that of the scheme of only introducing the correction of the errors of every single analogue prediction, but is also better than that of the T63 model.展开更多
Structure prediction methods have been widely used as a state-of-the-art tool for structure searches and materials discovery, leading to many theory-driven breakthroughs on discoveries of new materials. These methods ...Structure prediction methods have been widely used as a state-of-the-art tool for structure searches and materials discovery, leading to many theory-driven breakthroughs on discoveries of new materials. These methods generally involve the exploration of the potential energy surfaces of materials through various structure sampling techniques and optimization algorithms in conjunction with quantum mechanical calculations. By taking advantage of the general feature of materials potential energy surface and swarm-intelligence-based global optimization algorithms, we have developed the CALYPSO method for structure prediction, which has been widely used in fields as diverse as computational physics, chemistry, and materials science. In this review, we provide the basic theory of the CALYPSO method, placing particular emphasis on the principles of its various structure dealing methods. We also survey the current challenges faced by structure prediction methods and include an outlook on the future developments of CALYPSO in the conclusions.展开更多
The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though m...The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorpo- rated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model.展开更多
Reservoir identification and production prediction are two of the most important tasks in petroleum exploration and development.Machine learning(ML)methods are used for petroleum-related studies,but have not been appl...Reservoir identification and production prediction are two of the most important tasks in petroleum exploration and development.Machine learning(ML)methods are used for petroleum-related studies,but have not been applied to reservoir identification and production prediction based on reservoir identification.Production forecasting studies are typically based on overall reservoir thickness and lack accuracy when reservoirs contain a water or dry layer without oil production.In this paper,a systematic ML method was developed using classification models for reservoir identification,and regression models for production prediction.The production models are based on the reservoir identification results.To realize the reservoir identification,seven optimized ML methods were used:four typical single ML methods and three ensemble ML methods.These methods classify the reservoir into five types of layers:water,dry and three levels of oil(I oil layer,II oil layer,III oil layer).The validation and test results of these seven optimized ML methods suggest the three ensemble methods perform better than the four single ML methods in reservoir identification.The XGBoost produced the model with the highest accuracy;up to 99%.The effective thickness of I and II oil layers determined during the reservoir identification was fed into the models for predicting production.Effective thickness considers the distribution of the water and the oil resulting in a more reasonable production prediction compared to predictions based on the overall reservoir thickness.To validate the superiority of the ML methods,reference models using overall reservoir thickness were built for comparison.The models based on effective thickness outperformed the reference models in every evaluation metric.The prediction accuracy of the ML models using effective thickness were 10%higher than that of reference model.Without the personal error or data distortion existing in traditional methods,this novel system realizes rapid analysis of data while reducing the time required to resolve reservoir classification and production prediction challenges.The ML models using the effective thickness obtained from reservoir identification were more accurate when predicting oil production compared to previous studies which use overall reservoir thickness.展开更多
Cluster science as a bridge linking atomic molecular physics and condensed matter inspired the nanomaterials development in the past decades, ranging from the single-atom catalysis to ligand-protected noble metal clus...Cluster science as a bridge linking atomic molecular physics and condensed matter inspired the nanomaterials development in the past decades, ranging from the single-atom catalysis to ligand-protected noble metal clusters. The corresponding studies not only have been restricted to the search for the geometrical structures of clusters, but also have promoted the development of cluster-assembled materials as the building blocks. The CALYPSO cluster prediction method combined with other computational techniques have significantly stimulated the development of the cluster-based nanomaterials. In this review, we will summarize some good cases of cluster structure by CALYPSO method, which have also been successfully identified by the photoelectron spectra experiments. Beginning with the alkali-metal clusters, which serve as benchmarks, a series of studies are performed on the size-dependent elemental clusters which possess relatively high stability and interesting chemical physical properties. Special attentions are paid to the boron-based clusters because of their promising applications. The NbSi12 and BeB16 clusters, for example, are two classic representatives of the silicon-and boron-based clusters, which can be viewed as building blocks of nanotubes and borophene. This review offers a detailed description of the structural evolutions and electronic properties of medium-sized pure and doped clusters, which will advance fundamental knowledge of cluster-based nanomaterials and provide valuable information for further theoretical and experimental studies.展开更多
Throughput prediction is essential for congestion control and LTE network management. In this paper, the autoregressive integrated moving average (ARIMA) model and exponential smoothing model are used to predict the...Throughput prediction is essential for congestion control and LTE network management. In this paper, the autoregressive integrated moving average (ARIMA) model and exponential smoothing model are used to predict the throughput in a single cell and whole region in an LTE network. The experimental results show that these two models perform differently in both scenarios. The ARIMA model is better than the exponential smoothing model for predicting throughput on weekdays in a whole region. The exponential smoothing model is better than the ARIMA model for predicting throughput on weekends in a whole region. The exponential smoothing model is better than the ARIMA model for predicting throughput in a single cell. In these two LTE network scenarios, throughput prediction based on traffic time series leads to more efficient resource management and better QoS.展开更多
Vibration fatigue is one of the main failure modes of blade.The vibration fatigue life of blade is scattered caused by manufacture error,material property dispersion and external excitation randomness.A new vibration ...Vibration fatigue is one of the main failure modes of blade.The vibration fatigue life of blade is scattered caused by manufacture error,material property dispersion and external excitation randomness.A new vibration fatigue probabilistic life prediction model(VFPLPM)and a prediction method are proposed in this paper.Firstly,as one-dimensional volumetric method(ODVM)only considers the principle calculation direction,a three-dimensional space vector volumetric method(TSVVM)is proposed to improve fatigue life prediction accuracy for actual threedimensional engineering structure.Secondly,based on the two volumetric methods(ODVM and TSVVM),the material C-P-S-N fatigue curve model(CFCM)and the maximum entropy quantile function model(MEQFM),VFPLPM is established to predict the vibration fatigue probabilistic life of blade.The VFPLPM is combined with maximum stress method(MSM),ODVM and TSVVM to estimate vibration fatigue probabilistic life of blade simulator by finite element simulation,and is verified by vibration fatigue test.The results show that all of the three methods can predict the vibration fatigue probabilistic life of blade simulator well.VFPLPM &TSVVM method has the highest computational accuracy for considering stress gradient effect not only in the principle calculation direction but also in other space vector directions.展开更多
To describe the complex phase transformation in the process of depletion exploitation of volatile oil reservoir,four fluid phases are defined,and production and remaining volume of these phases are calculated based on...To describe the complex phase transformation in the process of depletion exploitation of volatile oil reservoir,four fluid phases are defined,and production and remaining volume of these phases are calculated based on the principle of surface volume balance,then the recovery prediction method of volatile oil reservoir considering the influence of condensate content in released solution gas and the correction method of multiple degassing experiments data are established.Taking three typical kinds of crude oil(black oil,medium-weak volatile oil,strong volatile oil)as examples,the new improved method is used to simulate constant volume depletion experiments based on the corrected data of multiple degassing experiment to verify the reliability of the modified method.By using"experimental data and traditional method","corrected data and traditional method"and"corrected data and modified method",recovery factors of these three typical kinds of oil are calculated respectively.The source of parameters and the calculation methods have little effect on the recovery of typical black oil.However,with the increase of crude oil volatility,the oil recovery will be seriously underestimated by using experimental data or traditional method.The combination of"corrected data and modified method"considers the influence of condensate in gas phase in both experimental parameters and calculation method,and has good applicability to typical black oil and volatile oil.The strong shrinkage of volatile oil makes more"liquid oil"convert to"gaseous oil",so volatile oil reservoir can reach very high oil recovery by depletion drive.展开更多
A model predictive inverse method (MPIM) is presented to estimate the time- and space-dependent heat flux onthe ablated boundary and the ablation velocity of the two-dimensional ablation system. For the method, first ...A model predictive inverse method (MPIM) is presented to estimate the time- and space-dependent heat flux onthe ablated boundary and the ablation velocity of the two-dimensional ablation system. For the method, first of all, therelationship between the heat flux and the temperatures of the measurement points inside the ablation material is establishedby the predictive model based on an influence relationship matrix. Meanwhile, the estimation task is formulated as aninverse heat transfer problem (IHTP) with consideration of ablation, which is described by an objective function of thetemperatures at the measurement point. Then, the rolling optimization is used to solve the IHTP to online estimate theunknown heat flux on the ablated boundary. Furthermore, the movement law of the ablated boundary is reconstructedaccording to the estimation of the boundary heat flux. The effects of the temperature measurement errors, the numberof future time steps, and the arrangement of the measurement points on the estimation results are analyzed in numericalexperiments. On the basis of the numerical results, the effectiveness of the presented method is clarified.展开更多
文摘Objective:To investigate the reliability for kinetic assay of substance with background predicted by the integrated method using uricase reaction as model. Methods: Absorbance before uricase action (Δ0) was estimated by extrapolation with given lag time of steady-state reaction. With Km fixed at 12.5μmol/L, background absorbance (Δb) was predicted by nonlinearly fitting integrated Michaelis-Menten equation to Candida utilis uricase reaction curve. Uric acid in reaction solution was determined by the difference (ΔA) between Δ0 and Δb. Results .Ab usually showed deviation 〈3% from direct assay with residual substrate done fifth of initial substrate for analysis. ΔA showed CV 〈5% with resistance to common interferences except xanthine, and it linearly responded to uric acid with slope consistent to the absorptivity of uric acid. The lower limit was 2.0 μmol/L and upper limit reached 30 μmol/L in reaction solution with data monitored within 8 min reaction at 0. 015 U/ml uricase. Preliminary application to serum and urine gave better precision than the direct equilibrium method without the removal of proteins before analysis. Conclusion .This kinetic method with background predicted by the integrated method was reliable for enzymatic analysis, and it showed resistance to common interferences and enhanced efficiency at much lower cost.
基金supported by the Key Projects of Natural Science Foundation of China(No.41931284)the Scientific Research Start-Up Fund for High-Level Introduced Talents of Anhui University of Science and Technology(No.2022yjrc21).
文摘In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation range as well as the fact that the shape of the overburden deformation area will change with the excavation length are ignored.In this paper,an improved key stratum theory(IKS theory)was proposed by fixing these two shortcomings.Then,a WFZ height prediction method based on IKS theory was established and applied.First,the range of overburden involved in the analysis was determined according to the tensile stress distribution range above the goaf.Second,the key stratum in the overburden involved in the analysis was identified through IKS theory.Finally,the tendency of the WFZ to develop upward was determined by judging whether or not the identified key stratum will break.The proposed method was applied and verified in a mining case study,and the reasons for the differences in the development patterns between the WFZs in coalfields in Northwest and East China were also fully explained by this method.
基金Sponsored by the Basic Research Fundation of Beijing Institute of Technology (200705422009)
文摘Water content in output crude oil is hard to measure precisely because of wide range of dielectric coefficient of crude oil caused by injected dehydrating and demulsifying agents.The method to reduce measurement error of water content in crude oil proposed in this paper is based on switching measuring ranges of on-line water content analyzer automatically.Measuring precision on data collected from oil field and analyzed by in-field operators can be impressively improved by using back propogation (BP) neural network to predict water content in output crude oil.Application results show that the difficulty in accurately measuring water-oil content ratio can be solved effectively through this combination of on-line measuring range automatic switching and real time prediction,as this method has been tested repeatedly on-site in oil fields with satisfactory prediction results.
基金Supported by the National Natural Science Foundation of China(Nos.52222904 and 52309117)China Postdoctoral Science Foundation(Nos.2022TQ0168 and 2023M731895).
文摘Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.
基金supported by the National Natural Science Foundation of China(Grant No.11502114)the Fundamental Research Funds for the Central Universities(Grant No.30918011323)
文摘One of the greatest challenges in the design of a gun is to balance muzzle velocity and recoil,especially for guns on aircrafts and deployable vehicles.To resolve the conflict between gun power and recoil force,a concept of rarefaction wave gun(RAVEN)was proposed to significantly reduce the weapon recoil and the heat in barrel,while minimally reducing the muzzle velocity.The main principle of RAVEN is that the rarefaction wave will not reach the projectile base until the muzzle by delaying the venting time of an expansion nozzle at the breech.Developed on the RAVEN principle,the purpose of this paper is to provide an engineering method for predicting the performance of a low-recoil gun with front nozzle.First,a two-dimensional two-phase flow model of interior ballistic during the RAVEN firing cycle was established.Numerical simulation results were compared with the published data to validate the reliability and accuracy.Next,the effects of the vent opening times and locations were investigated to determine the influence rules on the performance of the RAVEN with front nozzle.Then according to the results above,simple nonlinear fitting formulas were provided to explain how the muzzle velocity and the recoil force change with the vent opening time and location.Finally,a better vent venting opening time corresponding to the vent location was proposed.The findings should make an important contribution to the field of engineering applications of the RAVEN.
基金support from "973 Project" (Contract No. 2010CB226706)
文摘Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts for failure modes are obtained with the Borda method. The risk indexes of failure modes are derived from the Borda matrix. Based on the support vector machine (SVM), a casing life prediction model is established. In the prediction model, eight risk indexes are defined as input vectors and casing life is defined as the output vector. The ideal model parameters are determined with the training set from 19 wells with casing failure. The casing life prediction software is developed with the SVM model as a predictor. The residual life of 60 wells with casing failure is predicted with the software, and then compared with the actual casing life. The comparison results show that the casing life prediction software with the SVM model has high accuracy.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 40575036 and 40325015).Acknowledgement The authors thank Drs Zhang Pei-Qun and Bao Ming very much for their valuable comments on the present paper.
文摘In this paper, an analogue correction method of errors (ACE) based on a complicated atmospheric model is further developed and applied to numerical weather prediction (NWP). The analysis shows that the ACE can effectively reduce model errors by combining the statistical analogue method with the dynamical model together in order that the information of plenty of historical data is utilized in the current complicated NWP model, Furthermore, in the ACE, the differences of the similarities between different historical analogues and the current initial state are considered as the weights for estimating model errors. The results of daily, decad and monthly prediction experiments on a complicated T63 atmospheric model show that the performance of the ACE by correcting model errors based on the estimation of the errors of 4 historical analogue predictions is not only better than that of the scheme of only introducing the correction of the errors of every single analogue prediction, but is also better than that of the T63 model.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11534003 and 11604117)the National Key Research and Development Program of China(Grant No.2016YFB0201201)+1 种基金the Program for JLU Science and Technology Innovative Research Team(JLUSTIRT)of Chinathe Science Challenge Project of China(Grant No.TZ2016001)
文摘Structure prediction methods have been widely used as a state-of-the-art tool for structure searches and materials discovery, leading to many theory-driven breakthroughs on discoveries of new materials. These methods generally involve the exploration of the potential energy surfaces of materials through various structure sampling techniques and optimization algorithms in conjunction with quantum mechanical calculations. By taking advantage of the general feature of materials potential energy surface and swarm-intelligence-based global optimization algorithms, we have developed the CALYPSO method for structure prediction, which has been widely used in fields as diverse as computational physics, chemistry, and materials science. In this review, we provide the basic theory of the CALYPSO method, placing particular emphasis on the principles of its various structure dealing methods. We also survey the current challenges faced by structure prediction methods and include an outlook on the future developments of CALYPSO in the conclusions.
文摘The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorpo- rated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model.
文摘Reservoir identification and production prediction are two of the most important tasks in petroleum exploration and development.Machine learning(ML)methods are used for petroleum-related studies,but have not been applied to reservoir identification and production prediction based on reservoir identification.Production forecasting studies are typically based on overall reservoir thickness and lack accuracy when reservoirs contain a water or dry layer without oil production.In this paper,a systematic ML method was developed using classification models for reservoir identification,and regression models for production prediction.The production models are based on the reservoir identification results.To realize the reservoir identification,seven optimized ML methods were used:four typical single ML methods and three ensemble ML methods.These methods classify the reservoir into five types of layers:water,dry and three levels of oil(I oil layer,II oil layer,III oil layer).The validation and test results of these seven optimized ML methods suggest the three ensemble methods perform better than the four single ML methods in reservoir identification.The XGBoost produced the model with the highest accuracy;up to 99%.The effective thickness of I and II oil layers determined during the reservoir identification was fed into the models for predicting production.Effective thickness considers the distribution of the water and the oil resulting in a more reasonable production prediction compared to predictions based on the overall reservoir thickness.To validate the superiority of the ML methods,reference models using overall reservoir thickness were built for comparison.The models based on effective thickness outperformed the reference models in every evaluation metric.The prediction accuracy of the ML models using effective thickness were 10%higher than that of reference model.Without the personal error or data distortion existing in traditional methods,this novel system realizes rapid analysis of data while reducing the time required to resolve reservoir classification and production prediction challenges.The ML models using the effective thickness obtained from reservoir identification were more accurate when predicting oil production compared to previous studies which use overall reservoir thickness.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1804121 and 11304167)
文摘Cluster science as a bridge linking atomic molecular physics and condensed matter inspired the nanomaterials development in the past decades, ranging from the single-atom catalysis to ligand-protected noble metal clusters. The corresponding studies not only have been restricted to the search for the geometrical structures of clusters, but also have promoted the development of cluster-assembled materials as the building blocks. The CALYPSO cluster prediction method combined with other computational techniques have significantly stimulated the development of the cluster-based nanomaterials. In this review, we will summarize some good cases of cluster structure by CALYPSO method, which have also been successfully identified by the photoelectron spectra experiments. Beginning with the alkali-metal clusters, which serve as benchmarks, a series of studies are performed on the size-dependent elemental clusters which possess relatively high stability and interesting chemical physical properties. Special attentions are paid to the boron-based clusters because of their promising applications. The NbSi12 and BeB16 clusters, for example, are two classic representatives of the silicon-and boron-based clusters, which can be viewed as building blocks of nanotubes and borophene. This review offers a detailed description of the structural evolutions and electronic properties of medium-sized pure and doped clusters, which will advance fundamental knowledge of cluster-based nanomaterials and provide valuable information for further theoretical and experimental studies.
文摘Throughput prediction is essential for congestion control and LTE network management. In this paper, the autoregressive integrated moving average (ARIMA) model and exponential smoothing model are used to predict the throughput in a single cell and whole region in an LTE network. The experimental results show that these two models perform differently in both scenarios. The ARIMA model is better than the exponential smoothing model for predicting throughput on weekdays in a whole region. The exponential smoothing model is better than the ARIMA model for predicting throughput on weekends in a whole region. The exponential smoothing model is better than the ARIMA model for predicting throughput in a single cell. In these two LTE network scenarios, throughput prediction based on traffic time series leads to more efficient resource management and better QoS.
基金supported by the Aviation Science Foundation of China(No.20150252003)
文摘Vibration fatigue is one of the main failure modes of blade.The vibration fatigue life of blade is scattered caused by manufacture error,material property dispersion and external excitation randomness.A new vibration fatigue probabilistic life prediction model(VFPLPM)and a prediction method are proposed in this paper.Firstly,as one-dimensional volumetric method(ODVM)only considers the principle calculation direction,a three-dimensional space vector volumetric method(TSVVM)is proposed to improve fatigue life prediction accuracy for actual threedimensional engineering structure.Secondly,based on the two volumetric methods(ODVM and TSVVM),the material C-P-S-N fatigue curve model(CFCM)and the maximum entropy quantile function model(MEQFM),VFPLPM is established to predict the vibration fatigue probabilistic life of blade.The VFPLPM is combined with maximum stress method(MSM),ODVM and TSVVM to estimate vibration fatigue probabilistic life of blade simulator by finite element simulation,and is verified by vibration fatigue test.The results show that all of the three methods can predict the vibration fatigue probabilistic life of blade simulator well.VFPLPM &TSVVM method has the highest computational accuracy for considering stress gradient effect not only in the principle calculation direction but also in other space vector directions.
基金Supported by the China National Science and Technology Major Project(2016ZX05027)。
文摘To describe the complex phase transformation in the process of depletion exploitation of volatile oil reservoir,four fluid phases are defined,and production and remaining volume of these phases are calculated based on the principle of surface volume balance,then the recovery prediction method of volatile oil reservoir considering the influence of condensate content in released solution gas and the correction method of multiple degassing experiments data are established.Taking three typical kinds of crude oil(black oil,medium-weak volatile oil,strong volatile oil)as examples,the new improved method is used to simulate constant volume depletion experiments based on the corrected data of multiple degassing experiment to verify the reliability of the modified method.By using"experimental data and traditional method","corrected data and traditional method"and"corrected data and modified method",recovery factors of these three typical kinds of oil are calculated respectively.The source of parameters and the calculation methods have little effect on the recovery of typical black oil.However,with the increase of crude oil volatility,the oil recovery will be seriously underestimated by using experimental data or traditional method.The combination of"corrected data and modified method"considers the influence of condensate in gas phase in both experimental parameters and calculation method,and has good applicability to typical black oil and volatile oil.The strong shrinkage of volatile oil makes more"liquid oil"convert to"gaseous oil",so volatile oil reservoir can reach very high oil recovery by depletion drive.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51876010 and 51676019).
文摘A model predictive inverse method (MPIM) is presented to estimate the time- and space-dependent heat flux onthe ablated boundary and the ablation velocity of the two-dimensional ablation system. For the method, first of all, therelationship between the heat flux and the temperatures of the measurement points inside the ablation material is establishedby the predictive model based on an influence relationship matrix. Meanwhile, the estimation task is formulated as aninverse heat transfer problem (IHTP) with consideration of ablation, which is described by an objective function of thetemperatures at the measurement point. Then, the rolling optimization is used to solve the IHTP to online estimate theunknown heat flux on the ablated boundary. Furthermore, the movement law of the ablated boundary is reconstructedaccording to the estimation of the boundary heat flux. The effects of the temperature measurement errors, the numberof future time steps, and the arrangement of the measurement points on the estimation results are analyzed in numericalexperiments. On the basis of the numerical results, the effectiveness of the presented method is clarified.