According to the requirement of multi-parameter time and frequency measurement without frequency normalization,a different frequency synchronization theory is proposed based on Lissajous figure method and the variatio...According to the requirement of multi-parameter time and frequency measurement without frequency normalization,a different frequency synchronization theory is proposed based on Lissajous figure method and the variation lawof Lissajous figure which are used in practice teaching of frequency measurement. The theory can achieve high-precision transmission and comparison of time and frequency and precise locking and tracking of phase and frequency,improve the level of scientific research on time and frequency for postgraduate,and promote practice teaching innovation of time frequency measurement for undergraduate. Utilizing the ratio of horizontal and vertical inflection point of the Lissajous figure,the nominal frequency of the measured signal is precisely calculated.The frequency deviation between the measured frequency and its nominal frequency can be obtained by combining the turning cycle of the Lissajous figure. By observing the phase relationship between the frequency standard signal and the measured signal,the accurate measurement of the frequency is implemented. Experimental results showthat the direct measurement and comparison better than the 10-11 order of magnitude with common frequency source can be finished between any signal frequencies.The frequency measurement method based on the theory has the advantage of simple operation,quick measurement speed,small error,lownoise and high measurement precision. It plays an important role in time synchronization,communications,metrology,scientific research,educational technology practice and equipment and other fields.展开更多
By analyzing the signal model of stepped-frequency waveform, a novel method for velocity measurement is proposed. The method is based on Doppler frequency difference which is achieved by using Hough transform. As the ...By analyzing the signal model of stepped-frequency waveform, a novel method for velocity measurement is proposed. The method is based on Doppler frequency difference which is achieved by using Hough transform. As the estimated velocity is inversely proportional to the frequency step size instead of the carrier frequency of the transmitted signal as the pulse-Doppler (PD) processing, the new algorithm can achieve much wider unambiguous velocity range. Furthermore, non-coherent integration of the sub-pulses with different carrier frequencies can be implemented by Hough trans- form to improve the anti-noise performance. Besides, field experimental results show that the high range resolution profile (HRRP) of a bullet with high speed can be reconstructed correctly without distortion.展开更多
We study the energy scaling of terahertz (THz) emission through difference frequency generation of near-infrared pulses, and demonstrate that Gigawatt few-cycle THz transients at the central frequency of 30 THz are pr...We study the energy scaling of terahertz (THz) emission through difference frequency generation of near-infrared pulses, and demonstrate that Gigawatt few-cycle THz transients at the central frequency of 30 THz are produced from GaSe crystal pumped by two pulses at 1.65 and 1.95 micrometers, with the high quantum yield of 28%. Our analysis indicates that the high yield of DFG originates from the largely reduced group velocity mismatch as the long-wavelength pumping pulses are employed.展开更多
A new scheme which generates multi-frequency terahertz(THz)waves from planar waveguide by the optimized cascaded difference frequency generation(OCDFG)is proposed.A THz wave with frequencyω_(T1)is generated by the OC...A new scheme which generates multi-frequency terahertz(THz)waves from planar waveguide by the optimized cascaded difference frequency generation(OCDFG)is proposed.A THz wave with frequencyω_(T1)is generated by the OCDFG with two infrared pump waves,and simultaneously a series of cascaded optical waves with a frequency intervalω_(T1)is generated.The THz wave with a frequency of M-timesω_(T1)is generated by mixing the m-th-order and the(m+M)-th-order cascaded optical wave.The phase mismatch distributions of cascaded difference frequency generation(CDFG)are modulated by changing the thickness of planar waveguide step by step,thereby satisfying the phase-matching condition from first-order to high-order cascaded Stokes process step by step.As a result,the intensity of THz wave can be enhanced and modulated by controlling the cascading order of OCDFG.展开更多
A novel scheme for high-efficiency terahertz(THz)wave generation based on optimized cascaded difference frequency generation(OCDFG)with planar waveguide is presented.The phase mismatches of each-order cascaded differe...A novel scheme for high-efficiency terahertz(THz)wave generation based on optimized cascaded difference frequency generation(OCDFG)with planar waveguide is presented.The phase mismatches of each-order cascaded difference frequency generation(CDFG)are modulated by changing the thickness of the waveguide,resulting in a decrement of phase mismatches in cascaded Stokes processes and an increment of phase mismatches in cascaded anti-Stokes processes simultaneously.The modulated phase mismatches enhance the cascaded Stokes processes and suppress the cascaded anti-Stokes processes simultaneously,yielding energy conversion efficiencies over 25%from optical wave to THz wave at 100 K.展开更多
High-efficiency terahertz(THz) wave generation with multiple frequencies by optimized cascaded difference frequency generation(OCDFG) is investigated at 100 K using a nonlinear crystal consisting of a periodically pol...High-efficiency terahertz(THz) wave generation with multiple frequencies by optimized cascaded difference frequency generation(OCDFG) is investigated at 100 K using a nonlinear crystal consisting of a periodically poled lithium niobate(PPLN) part and an aperiodically poled lithium niobate(APPLN) part.Two infrared pump waves with a frequency difference ω_(T1) generate THz waves and a series of cascaded optical waves in the PPLN part by cascaded difference frequency generation(CDFG).The generated cascaded optical waves with frequency interval ω_(T1) then further interact in the APPLN part by OCDFG,yielding the following two advantages.First,OCDFG in the APPLN part is efficiently stimulated by inputting multi-order cascaded optical waves rather than the only two intense infrared pump waves,yielding unprecedented energy conversion efficiencies in excess of 37% at 1 THz at 100 K.Second,THz waves with M timesω_(T1) are generated by mixing the mth-order and the(m+M)th-order cascaded optical waves by designing poling period distributions of the APPLN part.展开更多
We propose a novel scheme for THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves(HSWs).The repeated frequency conversions are accomplished by oscillations of...We propose a novel scheme for THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves(HSWs).The repeated frequency conversions are accomplished by oscillations of Stoke waves in resonant cavity(RC)where low-order Stokes waves(LSWs)are converted to high-order Stokes waves again and again.The continuous frequency conversions are accomplished by optimized cascaded difference frequency generation(OCDFG)where the poling periods of the optical crystal are aperiodic leading to the frequency conversions from low-order Stokes waves to high-order Stokes waves uninterruptedly and unidirectionally.Combined with the repeated and continuous frequency conversions,the optical-to-THz energy conversion efficiency(OTECE)exceeds 26%at 300 K and 43%at 100 K with pump intensities of 300 MW/cm^(2).展开更多
A novel widely tunable dual-wavelength mid-IR difference frequency generation (DFG) scheme with uniform grating periodically poled lithium niobate (PPLN) is presented in this paper. By using the temperature-depend...A novel widely tunable dual-wavelength mid-IR difference frequency generation (DFG) scheme with uniform grating periodically poled lithium niobate (PPLN) is presented in this paper. By using the temperature-dependent dispersion property of PPLN, the quasi-phase matching (QPM) peak for the pump may evolve into two separate ones and the wavelength spacing between them increases with the decrease of the crystal temperature. Such two pump QPM peaks may allow simultaneous dual-wavelength mid-IR laser radiations while properly setting the two fundamental pump wavelengths. With this scheme, mid-IR dual-wavelength laser radiations at around 3.228 and 3.548, 3.114 and 3.661, and 3.019 and 3.76 μm, are experimentally achieved for the crystal temperatures of 90, 65, and 30 ℃, respectively, based on the fiber laser fundamental lights.展开更多
We present the numerical results for the optimization of the pump-to-idler conversion efficiencies of nanosecond idler wavelength tunable cascaded optical parametric oscillators (OPO) in different wavelength tuning ...We present the numerical results for the optimization of the pump-to-idler conversion efficiencies of nanosecond idler wavelength tunable cascaded optical parametric oscillators (OPO) in different wavelength tuning ranges, where the primary signals from the OPO process are recycled to enhance the pump-to-idler conversion efficiencies via the simultaneous dif- ference frequency generation (DFG) process by monolithic aperiodically poled, magnesium oxide doped lithium niobate (APMgLN) crystals. The APMgLN crystals are designed with different chirp parameters for the DFG process to broaden their thermal acceptance bandwidths to different extents. The idler wavelength tuning of the cascaded OPO is realized by changing the temperature of the designed APMgLN crystal and the cascaded oscillation is achieved in a single pump pass singly resonant linear cavity. The pump-to-idler conversion efficiencies with respect to the pump pulse duration and ratio of OPO coefficient to DFG coefficient are calculated by numerically solving the coupled wave equations. The optimal work- ing conditions of the tunable cascaded OPOs pumped by pulses with energies of 350 p_J and 700 ~J are compared to obtain the general rules of optimization. It is concluded that the optimization becomes the interplay between the ratio of OPO coefficient to DFG coefficient and the pump pulse duration when the idler wavelength tuning range and the pump pulse energy are fixed. Besides, higher pump pulse energy is beneficial for reaching higher optimal pump-to-idler conversion efficiency as long as the APMgLN crystal is optimized according to this pump condition. To the best of our knowledge, this is the first numerical analysis of idler wavelength tunable cascaded OPOs based on chirp-assisted APMgLN crystals.展开更多
Combining oven controlled technique,digital compensation,high-resolution frequency difference measurement and self-calibration technique,a new design method of precise oven controlled crystal oscillator(OCXO) is pro...Combining oven controlled technique,digital compensation,high-resolution frequency difference measurement and self-calibration technique,a new design method of precise oven controlled crystal oscillator(OCXO) is proposed.Fine compensation is made in the vicinity of the crystal temperature inflection point by using the non-real-time temperature compensation strategy,and self-calibration system is integrated in the crystal.The method improves the digital compensated phase noise,simplifies the traditional OCXO development system,reduces the cost and shortens the developing cycle.Experiment results show that with a standard reference signal and self-calibration updated data,the oscillator can work stable and achieve its best performence.The performance index of crystal oscillator had an improvement with one to two orders of magnitude on the basis of original technical index.The method is widely used in the improvement of high-end crystal oscillator and atomic clock.展开更多
Using a double resonant KTiOPO4 (KTP) intracavity optical parametric oscillator operating at degenerated point of 2 μm, we demonstrate a unique mid-infrared source based on difference frequency generation in GaSe c...Using a double resonant KTiOPO4 (KTP) intracavity optical parametric oscillator operating at degenerated point of 2 μm, we demonstrate a unique mid-infrared source based on difference frequency generation in GaSe crystal. The output tuning range is 8.42-19.52 μm, and a peak power of 834 W for type-Ⅰ phase matching scheme and 730 W for type-Ⅱ phase matching scheme are achieved. Experimental results show that this oscillator is a good alternative to the generator of a compact and tabletop mid-infrared radiation with a widely tunable range.展开更多
Effects of second harmonic generation (SHG) and cascaded second harmonic generation/difference frequency generation(cSHG/DFG) based on the quasi-phase-matching (QPM) condition in periodically poled lithium nioba...Effects of second harmonic generation (SHG) and cascaded second harmonic generation/difference frequency generation(cSHG/DFG) based on the quasi-phase-matching (QPM) condition in periodically poled lithium niobate (PPLN) waveguide were investigated experimentally. SHG conversion efficiency of -13.6dB and QPM bandwidth of 0.45nm were achieved using a 16.1dBm power of fundamental wave at 1550.4nm. Using pulsed all-fiber passive mode locked laser and tunable continuous wave laser, cSHG/DFG effect utilized for optical sampling was observed. Conversion efficiencies were calculated, and 11.88nm-wide QPM bandwidth was achieved through changing the wavelength of input signal. Conversion efficiency of cSHG/DFG effect increased linearly with the total injected power.展开更多
基金Supported by the Project of Higher Education Teaching Reform and Practice in Henan Province(2017SJGLX353)the Project of Science and Technology on Electronic Information Control Laboratory,the Science and Technology Innovation Talents in Colleges and Universities of Henan Province(16HASTIT036)+2 种基金the Educational Technology Equipment and Practical Education of Henan Province(GZS028)the National Natural Science Foundation of China(U1304618)the Key Projects of Science And Technology of Henan Province(152102210351)
文摘According to the requirement of multi-parameter time and frequency measurement without frequency normalization,a different frequency synchronization theory is proposed based on Lissajous figure method and the variation lawof Lissajous figure which are used in practice teaching of frequency measurement. The theory can achieve high-precision transmission and comparison of time and frequency and precise locking and tracking of phase and frequency,improve the level of scientific research on time and frequency for postgraduate,and promote practice teaching innovation of time frequency measurement for undergraduate. Utilizing the ratio of horizontal and vertical inflection point of the Lissajous figure,the nominal frequency of the measured signal is precisely calculated.The frequency deviation between the measured frequency and its nominal frequency can be obtained by combining the turning cycle of the Lissajous figure. By observing the phase relationship between the frequency standard signal and the measured signal,the accurate measurement of the frequency is implemented. Experimental results showthat the direct measurement and comparison better than the 10-11 order of magnitude with common frequency source can be finished between any signal frequencies.The frequency measurement method based on the theory has the advantage of simple operation,quick measurement speed,small error,lownoise and high measurement precision. It plays an important role in time synchronization,communications,metrology,scientific research,educational technology practice and equipment and other fields.
基金Supported by the Fund of National Defense Industry Innovative Team(231)
文摘By analyzing the signal model of stepped-frequency waveform, a novel method for velocity measurement is proposed. The method is based on Doppler frequency difference which is achieved by using Hough transform. As the estimated velocity is inversely proportional to the frequency step size instead of the carrier frequency of the transmitted signal as the pulse-Doppler (PD) processing, the new algorithm can achieve much wider unambiguous velocity range. Furthermore, non-coherent integration of the sub-pulses with different carrier frequencies can be implemented by Hough trans- form to improve the anti-noise performance. Besides, field experimental results show that the high range resolution profile (HRRP) of a bullet with high speed can be reconstructed correctly without distortion.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274326,61221064,61405222,11134010 and 11127901the Shanghai Sailing Program under Grant No 14YF1406200
文摘We study the energy scaling of terahertz (THz) emission through difference frequency generation of near-infrared pulses, and demonstrate that Gigawatt few-cycle THz transients at the central frequency of 30 THz are produced from GaSe crystal pumped by two pulses at 1.65 and 1.95 micrometers, with the high quantum yield of 28%. Our analysis indicates that the high yield of DFG originates from the largely reduced group velocity mismatch as the long-wavelength pumping pulses are employed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61735010,31671580,and 61601183)the Natural Science Foundation of Henan Province,China(Grant No.162300410190)the Program for Science&Technology Innovation Talents in Universities of Henan Province,China(Grant No.18HASTIT023)。
文摘A new scheme which generates multi-frequency terahertz(THz)waves from planar waveguide by the optimized cascaded difference frequency generation(OCDFG)is proposed.A THz wave with frequencyω_(T1)is generated by the OCDFG with two infrared pump waves,and simultaneously a series of cascaded optical waves with a frequency intervalω_(T1)is generated.The THz wave with a frequency of M-timesω_(T1)is generated by mixing the m-th-order and the(m+M)-th-order cascaded optical wave.The phase mismatch distributions of cascaded difference frequency generation(CDFG)are modulated by changing the thickness of planar waveguide step by step,thereby satisfying the phase-matching condition from first-order to high-order cascaded Stokes process step by step.As a result,the intensity of THz wave can be enhanced and modulated by controlling the cascading order of OCDFG.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61735010,31671580,and 61601183)Natural Science Foundation of Henan Province,China(Grant No.162300410190)Program for Science&Technology Innovation Talents in Universities of Henan Province,China(Grant No.18HASTIT023)。
文摘A novel scheme for high-efficiency terahertz(THz)wave generation based on optimized cascaded difference frequency generation(OCDFG)with planar waveguide is presented.The phase mismatches of each-order cascaded difference frequency generation(CDFG)are modulated by changing the thickness of the waveguide,resulting in a decrement of phase mismatches in cascaded Stokes processes and an increment of phase mismatches in cascaded anti-Stokes processes simultaneously.The modulated phase mismatches enhance the cascaded Stokes processes and suppress the cascaded anti-Stokes processes simultaneously,yielding energy conversion efficiencies over 25%from optical wave to THz wave at 100 K.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61735010,31671580,and 61601183)the Natural Science Foundation of Henan Province,China(Grant No.162300410190)Program for Science&Technology Innovation Talents in Universities of Henan Province,China(Grant No.18HASTIT023)。
文摘High-efficiency terahertz(THz) wave generation with multiple frequencies by optimized cascaded difference frequency generation(OCDFG) is investigated at 100 K using a nonlinear crystal consisting of a periodically poled lithium niobate(PPLN) part and an aperiodically poled lithium niobate(APPLN) part.Two infrared pump waves with a frequency difference ω_(T1) generate THz waves and a series of cascaded optical waves in the PPLN part by cascaded difference frequency generation(CDFG).The generated cascaded optical waves with frequency interval ω_(T1) then further interact in the APPLN part by OCDFG,yielding the following two advantages.First,OCDFG in the APPLN part is efficiently stimulated by inputting multi-order cascaded optical waves rather than the only two intense infrared pump waves,yielding unprecedented energy conversion efficiencies in excess of 37% at 1 THz at 100 K.Second,THz waves with M timesω_(T1) are generated by mixing the mth-order and the(m+M)th-order cascaded optical waves by designing poling period distributions of the APPLN part.
基金the National Natural Science Foundation of China(Grant Nos.61735010,31671580,and 61601183)Natural Science Foundation of Henan Province,China(Grant No.162300410190)Program for Science&Technology Innovation Talents in Universities of Henan Province,China(Grant No.18HASTIT023)。
文摘We propose a novel scheme for THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves(HSWs).The repeated frequency conversions are accomplished by oscillations of Stoke waves in resonant cavity(RC)where low-order Stokes waves(LSWs)are converted to high-order Stokes waves again and again.The continuous frequency conversions are accomplished by optimized cascaded difference frequency generation(OCDFG)where the poling periods of the optical crystal are aperiodic leading to the frequency conversions from low-order Stokes waves to high-order Stokes waves uninterruptedly and unidirectionally.Combined with the repeated and continuous frequency conversions,the optical-to-THz energy conversion efficiency(OTECE)exceeds 26%at 300 K and 43%at 100 K with pump intensities of 300 MW/cm^(2).
基金Project supported by the National Natural Science Foundation of China(Grant No.11374161)the Open Research Project of Jiangsu Provincial Key Labo-ratory of Meteorological Observation and Information Processing,China(Grant No.KDXS1206)the Project Funded by the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions,China
文摘A novel widely tunable dual-wavelength mid-IR difference frequency generation (DFG) scheme with uniform grating periodically poled lithium niobate (PPLN) is presented in this paper. By using the temperature-dependent dispersion property of PPLN, the quasi-phase matching (QPM) peak for the pump may evolve into two separate ones and the wavelength spacing between them increases with the decrease of the crystal temperature. Such two pump QPM peaks may allow simultaneous dual-wavelength mid-IR laser radiations while properly setting the two fundamental pump wavelengths. With this scheme, mid-IR dual-wavelength laser radiations at around 3.228 and 3.548, 3.114 and 3.661, and 3.019 and 3.76 μm, are experimentally achieved for the crystal temperatures of 90, 65, and 30 ℃, respectively, based on the fiber laser fundamental lights.
基金supported by the National Natural Science Foundation of China(Grant No.61505236)the Innovation Program of Shanghai Institute of Technical Physics,China(Grant No.CX-2)the Program of Shanghai Subject Chief Scientist,China(Grant No.14XD1404000)
文摘We present the numerical results for the optimization of the pump-to-idler conversion efficiencies of nanosecond idler wavelength tunable cascaded optical parametric oscillators (OPO) in different wavelength tuning ranges, where the primary signals from the OPO process are recycled to enhance the pump-to-idler conversion efficiencies via the simultaneous dif- ference frequency generation (DFG) process by monolithic aperiodically poled, magnesium oxide doped lithium niobate (APMgLN) crystals. The APMgLN crystals are designed with different chirp parameters for the DFG process to broaden their thermal acceptance bandwidths to different extents. The idler wavelength tuning of the cascaded OPO is realized by changing the temperature of the designed APMgLN crystal and the cascaded oscillation is achieved in a single pump pass singly resonant linear cavity. The pump-to-idler conversion efficiencies with respect to the pump pulse duration and ratio of OPO coefficient to DFG coefficient are calculated by numerically solving the coupled wave equations. The optimal work- ing conditions of the tunable cascaded OPOs pumped by pulses with energies of 350 p_J and 700 ~J are compared to obtain the general rules of optimization. It is concluded that the optimization becomes the interplay between the ratio of OPO coefficient to DFG coefficient and the pump pulse duration when the idler wavelength tuning range and the pump pulse energy are fixed. Besides, higher pump pulse energy is beneficial for reaching higher optimal pump-to-idler conversion efficiency as long as the APMgLN crystal is optimized according to this pump condition. To the best of our knowledge, this is the first numerical analysis of idler wavelength tunable cascaded OPOs based on chirp-assisted APMgLN crystals.
基金Supported by the National Natural Science Foundation of China (10978017)the Open Fund of Key Laboratory of Time and Frequency Primary Standards (CAS)+2 种基金the Postdoctoral Grant of China (94469)the Basic and Advanced Technology Research Foundation of Hennan Province (122300410169)the Fundamental Research Funds for the Central Universities
文摘Combining oven controlled technique,digital compensation,high-resolution frequency difference measurement and self-calibration technique,a new design method of precise oven controlled crystal oscillator(OCXO) is proposed.Fine compensation is made in the vicinity of the crystal temperature inflection point by using the non-real-time temperature compensation strategy,and self-calibration system is integrated in the crystal.The method improves the digital compensated phase noise,simplifies the traditional OCXO development system,reduces the cost and shortens the developing cycle.Experiment results show that with a standard reference signal and self-calibration updated data,the oscillator can work stable and achieve its best performence.The performance index of crystal oscillator had an improvement with one to two orders of magnitude on the basis of original technical index.The method is widely used in the improvement of high-end crystal oscillator and atomic clock.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60777036 and 60671036)the National Basic Research Program of China (Grant No. 2007CB310403)
文摘Using a double resonant KTiOPO4 (KTP) intracavity optical parametric oscillator operating at degenerated point of 2 μm, we demonstrate a unique mid-infrared source based on difference frequency generation in GaSe crystal. The output tuning range is 8.42-19.52 μm, and a peak power of 834 W for type-Ⅰ phase matching scheme and 730 W for type-Ⅱ phase matching scheme are achieved. Experimental results show that this oscillator is a good alternative to the generator of a compact and tabletop mid-infrared radiation with a widely tunable range.
基金Supported by the National Natural Science Foundation of China(6077702460978007)
文摘Effects of second harmonic generation (SHG) and cascaded second harmonic generation/difference frequency generation(cSHG/DFG) based on the quasi-phase-matching (QPM) condition in periodically poled lithium niobate (PPLN) waveguide were investigated experimentally. SHG conversion efficiency of -13.6dB and QPM bandwidth of 0.45nm were achieved using a 16.1dBm power of fundamental wave at 1550.4nm. Using pulsed all-fiber passive mode locked laser and tunable continuous wave laser, cSHG/DFG effect utilized for optical sampling was observed. Conversion efficiencies were calculated, and 11.88nm-wide QPM bandwidth was achieved through changing the wavelength of input signal. Conversion efficiency of cSHG/DFG effect increased linearly with the total injected power.