Kizmaz [13] studied the difference sequence spaces ∞(A), c(A), and co(A). Several article dealt with the sets of sequences of m-th order difference of which are bounded, convergent, or convergent to zero. Alta...Kizmaz [13] studied the difference sequence spaces ∞(A), c(A), and co(A). Several article dealt with the sets of sequences of m-th order difference of which are bounded, convergent, or convergent to zero. Altay and Basar [5] and Altay, Basar, and Mursaleen [7] introduced the Euler sequence spaces e0^r, ec^r, and e∞^r, respectively. The main purpose of this article is to introduce the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m))consisting of all sequences whose mth order differences are in the Euler spaces e0^r, ec^r, and e∞^r, respectively. Moreover, the authors give some topological properties and inclusion relations, and determine the α-, β-, and γ-duals of the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m)), and the Schauder basis of the spaces e0^r△^(m)), ec^r△^(m)). The last section of the article is devoted to the characterization of some matrix mappings on the sequence space ec^r△^(m)).展开更多
In the past, several authors studied spaces of m-th order difference sequences, among them, H.Polat and F.Basar ([17]) defined the Euler spaces of m-th order difference sequences e r 0 (△ ( m ) ), e r c (△ (...In the past, several authors studied spaces of m-th order difference sequences, among them, H.Polat and F.Basar ([17]) defined the Euler spaces of m-th order difference sequences e r 0 (△ ( m ) ), e r c (△ ( m ) ) and e r ∞ (△ ( m ) ) and characterized some classes of matrix transformations on them. In our paper, we add a new supplementary aspect to their research by characterizing classes of compact operators on those spaces. For that purpose, the spaces are treated as the matrix domains of a triangle in the classical sequence spaces c 0 , c and ∞ . The main tool for our characterizations is the Hausdorff measure of noncompactness.展开更多
In this article, using generalized weighted mean and difference matrix of order m, we introduce the paranormed sequence space l(u, v, p; △(m)), which consist of the sequences whose generalized weighted △(m)-di...In this article, using generalized weighted mean and difference matrix of order m, we introduce the paranormed sequence space l(u, v, p; △(m)), which consist of the sequences whose generalized weighted △(m)-difference means are in the linear space l(p) defined by I.J.Maddox. Also, we determine the basis of this space and compute its α-, β- and γ-duals. Further, we give the characterization of the classes of matrix mappings from l(u, v, p, △(m)) to l∞, c, and co. Finally, we apply the Hausdorff measure of noncompacness to characterize some classes of compact operators given by matrices on the space lp(U, v, △(m)) (1 ≤ p 〈 ∞).展开更多
In this paper, we define a new generalized difference sequence space involving lacunary sequence. Then, we examine k-NUC property and property (β) for this space and also show that it is not rotund where p = (pr)...In this paper, we define a new generalized difference sequence space involving lacunary sequence. Then, we examine k-NUC property and property (β) for this space and also show that it is not rotund where p = (pr) is a bounded sequence of positive real numbers with pr ≥ 1 for all r ∈ N.展开更多
We mainly study the almost sure limiting behavior of weighted sums of the form ∑ni=1 aiXi/bn , where {Xn, n ≥ 1} is an arbitrary Banach space valued random element sequence or Banach space valued martingale differen...We mainly study the almost sure limiting behavior of weighted sums of the form ∑ni=1 aiXi/bn , where {Xn, n ≥ 1} is an arbitrary Banach space valued random element sequence or Banach space valued martingale difference sequence and {an, n ≥ 1} and {bn,n ≥ 1} are two sequences of positive constants. Some new strong laws of large numbers for such weighted sums are proved under mild conditions.展开更多
文摘Kizmaz [13] studied the difference sequence spaces ∞(A), c(A), and co(A). Several article dealt with the sets of sequences of m-th order difference of which are bounded, convergent, or convergent to zero. Altay and Basar [5] and Altay, Basar, and Mursaleen [7] introduced the Euler sequence spaces e0^r, ec^r, and e∞^r, respectively. The main purpose of this article is to introduce the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m))consisting of all sequences whose mth order differences are in the Euler spaces e0^r, ec^r, and e∞^r, respectively. Moreover, the authors give some topological properties and inclusion relations, and determine the α-, β-, and γ-duals of the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m)), and the Schauder basis of the spaces e0^r△^(m)), ec^r△^(m)). The last section of the article is devoted to the characterization of some matrix mappings on the sequence space ec^r△^(m)).
基金supported by the research project#144003 of the Serbian Ministry of Science, Technology and Development
文摘In the past, several authors studied spaces of m-th order difference sequences, among them, H.Polat and F.Basar ([17]) defined the Euler spaces of m-th order difference sequences e r 0 (△ ( m ) ), e r c (△ ( m ) ) and e r ∞ (△ ( m ) ) and characterized some classes of matrix transformations on them. In our paper, we add a new supplementary aspect to their research by characterizing classes of compact operators on those spaces. For that purpose, the spaces are treated as the matrix domains of a triangle in the classical sequence spaces c 0 , c and ∞ . The main tool for our characterizations is the Hausdorff measure of noncompactness.
文摘In this article, using generalized weighted mean and difference matrix of order m, we introduce the paranormed sequence space l(u, v, p; △(m)), which consist of the sequences whose generalized weighted △(m)-difference means are in the linear space l(p) defined by I.J.Maddox. Also, we determine the basis of this space and compute its α-, β- and γ-duals. Further, we give the characterization of the classes of matrix mappings from l(u, v, p, △(m)) to l∞, c, and co. Finally, we apply the Hausdorff measure of noncompacness to characterize some classes of compact operators given by matrices on the space lp(U, v, △(m)) (1 ≤ p 〈 ∞).
文摘In this paper, we define a new generalized difference sequence space involving lacunary sequence. Then, we examine k-NUC property and property (β) for this space and also show that it is not rotund where p = (pr) is a bounded sequence of positive real numbers with pr ≥ 1 for all r ∈ N.
基金Supported by the National Natural Science Foundationof China (10671149)
文摘We mainly study the almost sure limiting behavior of weighted sums of the form ∑ni=1 aiXi/bn , where {Xn, n ≥ 1} is an arbitrary Banach space valued random element sequence or Banach space valued martingale difference sequence and {an, n ≥ 1} and {bn,n ≥ 1} are two sequences of positive constants. Some new strong laws of large numbers for such weighted sums are proved under mild conditions.