Dielectric barrier discharge(DBD) is widely investigated in order to obtain uniform low-temperature plasma.Many studies have proved that some barrier materials,especially electrets,can improve the uniformity of discha...Dielectric barrier discharge(DBD) is widely investigated in order to obtain uniform low-temperature plasma.Many studies have proved that some barrier materials,especially electrets,can improve the uniformity of discharge.It is regarded as an available way to get atmospheric pressure glow discharge(APGD).In this paper,discharge forms with 4 different barrier materials(alumina,quartz,PTFE and PET) are investigated,and the transition of discharge form depending on the air pressure are recorded to estimate the influence of barrier materials on discharge.By using electrets as barrier materials,homogeneous discharges can be obtained in a more wide pressure range.Under the same experimental conditions,discharges with electrets are more uniform or have larger uniform areas due to the storage and desorption of charges on the surface of electrets.The electrons deposited in the surface layer can be released on next half cycle when the polarity of the applied voltage changes,and provide a number of seed electrons,which makes the discharge more homogeneous.The capacitance and the permittivity of barrier materials have no effect on the discharge form directly.展开更多
An experimental device is used to study the characteristics of dielectric barrier discharge(DBD)plasma excited by high voltage sub-microsecond pulse power in atmospheric air.Glass,polytetrafluoroethene(PTFE)and plexig...An experimental device is used to study the characteristics of dielectric barrier discharge(DBD)plasma excited by high voltage sub-microsecond pulse power in atmospheric air.Glass,polytetrafluoroethene(PTFE)and plexiglass are used as dielectric barrier materials.Comparatively homogeneous discharge is obtained within 130 mm diameter area in atmospheric air using the three dielectric materials with gap distances of 4.5 mm,6.5 mm and 6.5 mm,respectively.There is no filamentary discharge observed by naked eyes or by camera with the exposure time of 0.25 s.Gas gap voltage,discharge current,discharge power density,etc.are calculated by using Liu’s equivalent circuit model for pulsed DBD.These parameters are used to study the DBD characteristics.Typically,current varies from tens of amperes to hundreds of amperes in atmospheric air DBD excited by sub-microsecond pulses.The peak power can reach to MW order of magnitude.The average power surface density of 1.0 W/cm2and the average electron density of 1011cm 3can also be obtained in the discharge.Rotational and vibrational temperatures,approximately 400 K and 2 650 K,respectively,are obtained by using the emission spectrum of the discharge.This is the basic work performed for a better understanding of the characteristics of atmospheric air DBD plasma excited by high voltage sub-microsecond pulsed power source.展开更多
基金Project Supported by National Natural Science Foundation of China(50537020,50507003)Specialized Research Fund for the Doc-toral Programof High Education of China(20050079006).
文摘Dielectric barrier discharge(DBD) is widely investigated in order to obtain uniform low-temperature plasma.Many studies have proved that some barrier materials,especially electrets,can improve the uniformity of discharge.It is regarded as an available way to get atmospheric pressure glow discharge(APGD).In this paper,discharge forms with 4 different barrier materials(alumina,quartz,PTFE and PET) are investigated,and the transition of discharge form depending on the air pressure are recorded to estimate the influence of barrier materials on discharge.By using electrets as barrier materials,homogeneous discharges can be obtained in a more wide pressure range.Under the same experimental conditions,discharges with electrets are more uniform or have larger uniform areas due to the storage and desorption of charges on the surface of electrets.The electrons deposited in the surface layer can be released on next half cycle when the polarity of the applied voltage changes,and provide a number of seed electrons,which makes the discharge more homogeneous.The capacitance and the permittivity of barrier materials have no effect on the discharge form directly.
基金Project supported by National Natural Science Foundation of China(11035004), Double Hundred Talent Fotmdation of CAEP ( 2009R0102), Key Laboratory of Pulsed Power of CAEP Science and Technology Development Foundation (2008B0402037).
文摘An experimental device is used to study the characteristics of dielectric barrier discharge(DBD)plasma excited by high voltage sub-microsecond pulse power in atmospheric air.Glass,polytetrafluoroethene(PTFE)and plexiglass are used as dielectric barrier materials.Comparatively homogeneous discharge is obtained within 130 mm diameter area in atmospheric air using the three dielectric materials with gap distances of 4.5 mm,6.5 mm and 6.5 mm,respectively.There is no filamentary discharge observed by naked eyes or by camera with the exposure time of 0.25 s.Gas gap voltage,discharge current,discharge power density,etc.are calculated by using Liu’s equivalent circuit model for pulsed DBD.These parameters are used to study the DBD characteristics.Typically,current varies from tens of amperes to hundreds of amperes in atmospheric air DBD excited by sub-microsecond pulses.The peak power can reach to MW order of magnitude.The average power surface density of 1.0 W/cm2and the average electron density of 1011cm 3can also be obtained in the discharge.Rotational and vibrational temperatures,approximately 400 K and 2 650 K,respectively,are obtained by using the emission spectrum of the discharge.This is the basic work performed for a better understanding of the characteristics of atmospheric air DBD plasma excited by high voltage sub-microsecond pulsed power source.