Carbonate reservoirs worldwide are complex in structure,diverse in form,and highly heterogeneous.Based on these characteristics,the reservoir stimulation technologies and fluid flow characteristics of carbonate reserv...Carbonate reservoirs worldwide are complex in structure,diverse in form,and highly heterogeneous.Based on these characteristics,the reservoir stimulation technologies and fluid flow characteristics of carbonate reservoirs are briefly described in this study.The development methods and EOR technologies of carbonate reservoirs are systematically summarized,the relevant mechanisms are analyzed,and the application status of oil fields is catalogued.The challenges in the development of carbonate reservoirs are discussed,and future research directions are explored.In the current development processes of carbonate reservoirs,water flooding and gas flooding remain the primary means but are often prone to channeling problems.Chemical flooding is an effective method of tertiary oil recovery,but the harsh formation conditions require high-performance chemical agents.The application of emerging technologies can enhance the oil recovery efficiency and environmental friendliness to a certain extent,which is welcome in hard-to-recover areas such as heavy oil reservoirs,but the economic cost is often high.In future research on EOR technologies,flow field control and flow channel plugging will be the potential directions of traditional development methods,and the application of nanoparticles will revolutionize the chemical EOR methods.On the basis of diversified reservoir stimulation,combined with a variety of modern data processing schemes,multichannel EOR technologies are being developed to realize the systematic,intelligent,and cost-effective development of carbonate reservoirs.展开更多
Generally, the sequence decision of the development and utilization of Chinese mineral resources is based on national and provincial overall plan of the mineral resources. Such plan usually cannot reflect the relative...Generally, the sequence decision of the development and utilization of Chinese mineral resources is based on national and provincial overall plan of the mineral resources. Such plan usually cannot reflect the relative size of the suitability of the development and utilization of mineral resources. To solve the problem, the paper has selected the gift condition, the market condition, the technological condition,socio-economic condition and environmental condition as the starting-points to analyze the influential factors of the priority-sequence of mineral resources' development and utilization. The above 5 conditions are further specified into 9 evaluative indicators to establish an evaluation indicator system. At last,we propose a decision model of the priority sequence based on grey relational analysis method, and figure out the observation objects by the suitability index of development. Finally, the mineral resources of a certain province in China were analyzed as an example. The calculation results indicate that silver(2.0057), coal(1.9955), zinc(1.9442), cement limestone(1.9077), solvent limestone(1.5624) and other minerals in the province are suitable for development and utilization.展开更多
The oil oxidation characteristics of the whole temperature regions from 30 ℃ to 600 ℃ during oil reservoir air injection were revealed by experiments. The whole oil oxidation temperature regions were divided into fo...The oil oxidation characteristics of the whole temperature regions from 30 ℃ to 600 ℃ during oil reservoir air injection were revealed by experiments. The whole oil oxidation temperature regions were divided into four different parts: dissolving and inflation region, low temperature oxidation region, medium temperature oxidation region and high temperature oxidation region. The reaction mechanisms of different regions were explained. Based on the oil oxidation characteristics and filed tests results, light oil reservoirs air injection development methods were divided into two types: oxygen-reducing air flooding and air flooding;heavy oil reservoirs air injection in-situ combustion development methods were divided into two types: medium temperature in-situ combustion and high temperature in-situ combustion. When the reservoir temperature is lower than 120 ℃, oxygen-reducing air flooding should be used for light oil reservoir development. When the reservoir temperature is higher than 120 ℃, air flooding method should be used for light oil reservoir development. For a normal heavy oil reservoir, when the combustion front temperature is lower than 400 ℃, the development method is medium temperature in-situ combustion. For a heavy oil reservoir with high oil resin and asphalting contents, when the combustion front temperature is higher than 450 ℃, the development method at this condition is high temperature in-situ combustion. Ten years field tests of air injection carried out by PetroChina proved that air has advantages in technical, economical and gas source aspects compared with other gas agents for oilfield gas injection development. Air injection development can be used in low/super-low permeability light oil reservoirs, medium and high permeability light oil reservoirs and heavy oil reservoirs. Air is a very promising gas flooding agent.展开更多
The matters of equipment optimization development are usually discrete,fuzzy and non-quantitative.It is difficult directly to optimize the equipment development with a mathematical model.A set of methods for designing...The matters of equipment optimization development are usually discrete,fuzzy and non-quantitative.It is difficult directly to optimize the equipment development with a mathematical model.A set of methods for designing the equipment optimization development with six dimensions and eight main elements is established based on the theory and method of standardization.The top-tier design space of systematic development of equipment is built up by the relations of basic models,series and model spectrums.The relations of time and space for equipment optimization development are established.The design processes of a six dimension systematic space are expounded.The connotation of each plan in the main system space is analyzed.A design method for an entire equipment is established with standardization theory.The coordinating design methods of equipment technical system and the optimization design methods of equipment integration are discussed.The design methods for universalization and serialization of components and parts are established.The design methods of equipment optimization development highlight the relations of the basic model of platform,the serialization of platform basic models,the modularization of equipment functions,the model spectrum of variant equipment,and the universalization and serialization of components and parts.展开更多
To predict the thermal-hydraulic(T/H)parameters of the reactor core for liquid-metal-cooled fast reactors(LMFRs),especially under flow blockage accidents,we developed a subchannel code called KMC-FB.This code uses a t...To predict the thermal-hydraulic(T/H)parameters of the reactor core for liquid-metal-cooled fast reactors(LMFRs),especially under flow blockage accidents,we developed a subchannel code called KMC-FB.This code uses a time-dependent,four-equation,singlephase flow model together with a 3D heat conduction model for the fuel rods,which is solved by numerical methods based on the finite difference method with a staggered mesh.Owing to the local effect of the blockage on the flow field,low axial flow,increased forced crossflow,and backflow occur.To more accurately simulate this problem,we implemented a robust and novel solution method.We verified the code with a low-flow(~0.01 m/s)and large-scale blockage case.For the preliminary validation,we compared our results with the experimental data of the NACIE-UP BFPS blockage test and the KIT19ROD blockage test.The results revealed that KMC-FB has sufficient solution accuracy and can be used in future flow blockage analyses for LMFRs.展开更多
This paper put forward a framework of artificial intelligence (AI) for app;ication of aerial photograph. The framwork contains structures of knowledge base and inference mechanism.The functions of framework about how ...This paper put forward a framework of artificial intelligence (AI) for app;ication of aerial photograph. The framwork contains structures of knowledge base and inference mechanism.The functions of framework about how to convert expert’s knowledge into logical rules and how to inference using the rules wer discussed. The regeneraion pltring of fired land in Dwi’an Mountains area was taken as an example to have a ditail discuss on the contation of knowledge base and the steps of inference mechaism. the program was written using the basic langUae and the running result proyed tha the software can take the place of expert’s work with high efficiellcy.展开更多
基金supported by the Innovation Project for Graduates in UPC(Grant YCX2019016)the National Natural Science Foundation of China(Nos.51774306 and 51974346)+1 种基金the Science and Technology Support Plan for Youth Innovation of University in Shandong Province under Grant 2019KJH002the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008。
文摘Carbonate reservoirs worldwide are complex in structure,diverse in form,and highly heterogeneous.Based on these characteristics,the reservoir stimulation technologies and fluid flow characteristics of carbonate reservoirs are briefly described in this study.The development methods and EOR technologies of carbonate reservoirs are systematically summarized,the relevant mechanisms are analyzed,and the application status of oil fields is catalogued.The challenges in the development of carbonate reservoirs are discussed,and future research directions are explored.In the current development processes of carbonate reservoirs,water flooding and gas flooding remain the primary means but are often prone to channeling problems.Chemical flooding is an effective method of tertiary oil recovery,but the harsh formation conditions require high-performance chemical agents.The application of emerging technologies can enhance the oil recovery efficiency and environmental friendliness to a certain extent,which is welcome in hard-to-recover areas such as heavy oil reservoirs,but the economic cost is often high.In future research on EOR technologies,flow field control and flow channel plugging will be the potential directions of traditional development methods,and the application of nanoparticles will revolutionize the chemical EOR methods.On the basis of diversified reservoir stimulation,combined with a variety of modern data processing schemes,multichannel EOR technologies are being developed to realize the systematic,intelligent,and cost-effective development of carbonate reservoirs.
基金Financial support from the key project of the National Natural Science Foundation of China(No.71273118)is gratefully acknowledged
文摘Generally, the sequence decision of the development and utilization of Chinese mineral resources is based on national and provincial overall plan of the mineral resources. Such plan usually cannot reflect the relative size of the suitability of the development and utilization of mineral resources. To solve the problem, the paper has selected the gift condition, the market condition, the technological condition,socio-economic condition and environmental condition as the starting-points to analyze the influential factors of the priority-sequence of mineral resources' development and utilization. The above 5 conditions are further specified into 9 evaluative indicators to establish an evaluation indicator system. At last,we propose a decision model of the priority sequence based on grey relational analysis method, and figure out the observation objects by the suitability index of development. Finally, the mineral resources of a certain province in China were analyzed as an example. The calculation results indicate that silver(2.0057), coal(1.9955), zinc(1.9442), cement limestone(1.9077), solvent limestone(1.5624) and other minerals in the province are suitable for development and utilization.
文摘The oil oxidation characteristics of the whole temperature regions from 30 ℃ to 600 ℃ during oil reservoir air injection were revealed by experiments. The whole oil oxidation temperature regions were divided into four different parts: dissolving and inflation region, low temperature oxidation region, medium temperature oxidation region and high temperature oxidation region. The reaction mechanisms of different regions were explained. Based on the oil oxidation characteristics and filed tests results, light oil reservoirs air injection development methods were divided into two types: oxygen-reducing air flooding and air flooding;heavy oil reservoirs air injection in-situ combustion development methods were divided into two types: medium temperature in-situ combustion and high temperature in-situ combustion. When the reservoir temperature is lower than 120 ℃, oxygen-reducing air flooding should be used for light oil reservoir development. When the reservoir temperature is higher than 120 ℃, air flooding method should be used for light oil reservoir development. For a normal heavy oil reservoir, when the combustion front temperature is lower than 400 ℃, the development method is medium temperature in-situ combustion. For a heavy oil reservoir with high oil resin and asphalting contents, when the combustion front temperature is higher than 450 ℃, the development method at this condition is high temperature in-situ combustion. Ten years field tests of air injection carried out by PetroChina proved that air has advantages in technical, economical and gas source aspects compared with other gas agents for oilfield gas injection development. Air injection development can be used in low/super-low permeability light oil reservoirs, medium and high permeability light oil reservoirs and heavy oil reservoirs. Air is a very promising gas flooding agent.
文摘The matters of equipment optimization development are usually discrete,fuzzy and non-quantitative.It is difficult directly to optimize the equipment development with a mathematical model.A set of methods for designing the equipment optimization development with six dimensions and eight main elements is established based on the theory and method of standardization.The top-tier design space of systematic development of equipment is built up by the relations of basic models,series and model spectrums.The relations of time and space for equipment optimization development are established.The design processes of a six dimension systematic space are expounded.The connotation of each plan in the main system space is analyzed.A design method for an entire equipment is established with standardization theory.The coordinating design methods of equipment technical system and the optimization design methods of equipment integration are discussed.The design methods for universalization and serialization of components and parts are established.The design methods of equipment optimization development highlight the relations of the basic model of platform,the serialization of platform basic models,the modularization of equipment functions,the model spectrum of variant equipment,and the universalization and serialization of components and parts.
文摘To predict the thermal-hydraulic(T/H)parameters of the reactor core for liquid-metal-cooled fast reactors(LMFRs),especially under flow blockage accidents,we developed a subchannel code called KMC-FB.This code uses a time-dependent,four-equation,singlephase flow model together with a 3D heat conduction model for the fuel rods,which is solved by numerical methods based on the finite difference method with a staggered mesh.Owing to the local effect of the blockage on the flow field,low axial flow,increased forced crossflow,and backflow occur.To more accurately simulate this problem,we implemented a robust and novel solution method.We verified the code with a low-flow(~0.01 m/s)and large-scale blockage case.For the preliminary validation,we compared our results with the experimental data of the NACIE-UP BFPS blockage test and the KIT19ROD blockage test.The results revealed that KMC-FB has sufficient solution accuracy and can be used in future flow blockage analyses for LMFRs.
文摘This paper put forward a framework of artificial intelligence (AI) for app;ication of aerial photograph. The framwork contains structures of knowledge base and inference mechanism.The functions of framework about how to convert expert’s knowledge into logical rules and how to inference using the rules wer discussed. The regeneraion pltring of fired land in Dwi’an Mountains area was taken as an example to have a ditail discuss on the contation of knowledge base and the steps of inference mechaism. the program was written using the basic langUae and the running result proyed tha the software can take the place of expert’s work with high efficiellcy.