A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,...A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.展开更多
The sliding chairs are important components that support the switch rail conversion in the railway turnout.Due to the harsh environmental erosion and the attack from the wheel vibration,the failure rate of the sliding...The sliding chairs are important components that support the switch rail conversion in the railway turnout.Due to the harsh environmental erosion and the attack from the wheel vibration,the failure rate of the sliding chairs accounts for up to 10%of the total failure number in turnout.However,there is little research carried out in the existing literature to diagnose the deterioration states of the sliding chairs.To fill out this gap,by utilizing the images containing the sliding chairs,we propose an improved You Only Look Once version 7(YOLOv7)to identify the state of the sliding chairs.Specifically,to meet the challenge brought by the small inter-class differences among the sliding chair states,we first integrate the Convolutional Block Attention Module(CBAM)into the YOLOv7 backbone to screen the information conducive to state identification.Then,an extra detector for a small object is customized into the YOLOv7 network in order to detect the small-scale sliding chairs in images.Meanwhile,we revise the localization loss in the objective function as the Efficient Intersection over Union(EIoU)to optimize the design of the aspect ratio,which helps the localization of the sliding chairs.Next,to address the issue caused by the varying scales of the sliding chairs,we employ K-means++to optimize the priori selection of the initial anchor boxes.Finally,based on the images collected from real-world turnouts,the proposed method is verified and the results show that our method outperforms the basic YOLOv7 in the state identification of the sliding chairs with 4%improvements in terms of both mean Average Precision@0.5(mAP@0.5)and F1-score.展开更多
In the engineering field,switching systems have been extensively studied,where sudden changes of parameter value and structural form have a significant impact on the operational performance of the system.Therefore,it ...In the engineering field,switching systems have been extensively studied,where sudden changes of parameter value and structural form have a significant impact on the operational performance of the system.Therefore,it is important to predict the behavior of the switching system,which includes the accurate detection of mutation points and rapid reidentification of the model.However,few efforts have been contributed to accurately locating the mutation points.In this paper,we propose a new measure of mutation detection—the threshold-based switching index by analogy with the Lyapunov exponent.We give the algorithm for selecting the optimal threshold,which greatly reduces the additional data collection and the relative error of mutation detection.In the system identification part,considering the small data amount available and noise in the data,the abrupt sparse Bayesian regression(abrupt-SBR)method is proposed.This method captures the model changes by updating the previously identified model,which requires less data and is more robust to noise than identifying the new model from scratch.With two representative dynamical systems,we illustrate the application and effectiveness of the proposed methods.Our research contributes to the accurate prediction and possible control of switching system behavior.展开更多
The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving t...The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving targets is constructed. Based on this model, th e features of moving target imaging are introduced and the effects of target mov ement to SAR imaging are analyzed. Then the development and the status of this t echnique are reviewed in detail. Finally, some frontiers of this field are point ed out.展开更多
The method of volume identification in pneumatics was studied through theoretical analysis and experimental investigation. Regarding discharging from a container as a thermodynamic process with invariable index the d...The method of volume identification in pneumatics was studied through theoretical analysis and experimental investigation. Regarding discharging from a container as a thermodynamic process with invariable index the dependence of the container’s volume on the pressure in the container and the index, during discharging at the velocity of sound, is deduced. Then through a lot of experiments, the value of index n of the process is found with a given precision and a specified volume range. Furthermore, the feasibility and practicability of this method are verified by experiments.展开更多
Sensor scheduling is used to improve the sensing performance in the estimation of targets’states.However,few papers are on the sensor scheduling for target detection with guiding information.This letter can remedy th...Sensor scheduling is used to improve the sensing performance in the estimation of targets’states.However,few papers are on the sensor scheduling for target detection with guiding information.This letter can remedy this deficiency.A risk-based target detection method with guiding information is provided firstly,based on which,the sensor scheduling approach is aiming at reducing the risk and uncertainty in target detection,namely risk-based sensor scheduling method.What should be stressed is that the Prediction Formula in sensor scheduling is proposed.Lastly,some examples are conducted to stress the effectiveness of this proposed method.展开更多
This paper presents an investigation on the effect of JPEG compression on the similarity between the target image and the background,where the similarity is further used to determine the degree of clutter in the image...This paper presents an investigation on the effect of JPEG compression on the similarity between the target image and the background,where the similarity is further used to determine the degree of clutter in the image.Four new clutter metrics based on image quality assessment are introduced,among which the Haar wavelet-based perceptual similarity index,known as HaarPSI,provides the best target acquisition prediction results.It is shown that the similarity between the target and the background at the boundary between visually lossless and visually lossy compression does not change significantly compared to the case when an uncompressed image is used.In future work,through subjective tests,it is necessary to check whether this presence of compression at the threshold of just noticeable differences will affect the human target acquisition performance.Similarity values are compared with the results of subjective tests of the well-known target Search_2 database,where the degree of agreement between objective and subjective scores,measured through linear correlation,reached a value of 90%.展开更多
Multi-element array photoelectric detector is the core devices to form a photoelectric detection target with a large field of view.This photoelectric detection target brings about the problem of uneven detection sensi...Multi-element array photoelectric detector is the core devices to form a photoelectric detection target with a large field of view.This photoelectric detection target brings about the problem of uneven detection sensitivity distribution in the detection screen.To improve the uneven detection sensitivity of this photoelectric detection target,this paper analyzes the distribution law of the uneven detection sensitivity of the photoelectric detection target using the multi-element array photoelectric detector,dissects the main factors affecting the detection sensitivity according to the photoelectric detection principle,establishes the calculation model of detection sensitivity of the photoelectric detection target in the different detection areas and proposes a method to improve the detection sensitivity by compensating the gain of each unit photoelectric detector.The analysis of simulation and experimental results show that the proposed method of photoelectric detection target can effectively improve the output signal amplitude of the projectile under the certain detection distance,in particular,the output signal amplitude of the projectile is significantly increased when the projectile passes through the detection blind area.The experimental results are consistent with the simulation results,which verify the effectiveness of the proposed improvement method.展开更多
Modal and damage identification based on ambient excitation can greatly improve the efficiency of high-speed railway bridge vibration detection.This paper first describes the basic principles of stochastic subspace id...Modal and damage identification based on ambient excitation can greatly improve the efficiency of high-speed railway bridge vibration detection.This paper first describes the basic principles of stochastic subspace identification,peak-picking,and frequency domain decomposition method in modal analysis based on ambient excitation,and the effectiveness of these three methods is verified through finite element calculation and numerical simulation,Then the damage element is added to the finite element model to simulate the crack,and the curvature mode difference and the curvature mode area difference square ratio are calculated by using the stochastic subspace identification results to verify their ability of damage identification and location.Finally,the above modal and damage identification techniques are integrated to develop a bridge modal and damage identification software platform.The final results show that all three modal identification methods can accurately identify the vibration frequency and mode shape,both damage identification methods can accurately identify and locate the damage,and the developed software platform is simple and efficient.展开更多
In recent years,with the development of synthetic aperture radar(SAR)technology and the widespread application of deep learning,lightweight detection of SAR images has emerged as a research direction.The ultimate goal...In recent years,with the development of synthetic aperture radar(SAR)technology and the widespread application of deep learning,lightweight detection of SAR images has emerged as a research direction.The ultimate goal is to reduce computational and storage requirements while ensuring detection accuracy and reliability,making it an ideal choice for achieving rapid response and efficient processing.In this regard,a lightweight SAR ship target detection algorithm based on YOLOv8 was proposed in this study.Firstly,the C2f-Sc module was designed by fusing the C2f in the backbone network with the ScConv to reduce spatial redundancy and channel redundancy between features in convolutional neural networks.At the same time,the Ghost module was introduced into the neck network to effectively reduce model parameters and computational complexity.A relatively lightweight EMA attention mechanism was added to the neck network to promote the effective fusion of features at different levels.Experimental results showed that the Parameters and GFLOPs of the improved model are reduced by 8.5%and 7.0%when mAP@0.5 and mAP@0.5:0.95 are increased by 0.7%and 1.8%,respectively.It makes the model lightweight and improves the detection accuracy,which has certain application value.展开更多
In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on tempo...In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on temporal profiles is presented that addresses the temporal characteristics of the target and background pixels to eliminate the large variation of background temporal profiles. Firstly, the temporal behaviors of different types of image pixels of practical infrared scenes are analyzed.Then, the new local and global variance filter is proposed. The baseline of the fluctuation level of background temporal profiles is obtained by using the local and global variance filter. The height of the target pulse signal is extracted by subtracting the baseline from the original temporal profiles. Finally, a new target detection criterion is designed. The proposed method is applied to detect dim and small targets in practical infrared sequence images. The experimental results show that the proposed algorithm has good detection performance for dim moving small targets in the complex background.展开更多
The history and results of petroleum exploration in the Santos Basin, Brazil are reviewed. The regularity of hydrocarbon enrichment and the key exploration technologies are summarized and analyzed using the seismic, g...The history and results of petroleum exploration in the Santos Basin, Brazil are reviewed. The regularity of hydrocarbon enrichment and the key exploration technologies are summarized and analyzed using the seismic, gravity, magnetic and drilling data. It is proposed that the Santos Basin had a structural pattern of two uplifts and three depressions and the Aram-Uirapuru uplift belt controlled the hydrocarbon accumulation. It is believed that the main hydrocarbon source kitchen in the rift period controlled the hydrocarbon-enriched zones, paleo-structures controlled the scale and quality of lacustrine carbonate reservoirs, and continuous thick salt rocks controlled the hydrocarbon formation and preservation. The process and mechanism of reservoirs being transformed by CO_(2)charging were revealed. Five key exploration technologies were developed,including the variable-velocity mapping for layer-controlled facies-controlled pre-salt structures, the prediction of lacustrine carbonate reservoirs, the prediction of intrusive/effusive rock distribution, the detection of hydrocarbons in lacustrine carbonates, and the logging identification of supercritical CO_(2)fluid. These theoretical recognitions and exploration technologies have contributed to the discovery of deep-water super-large reservoirs under CNODC projects in Brazil, and will guide the further exploration of deep-water large reservoirs in the Santos Basin and other similar regions.展开更多
For establishing the equation of the capacitive target detection accurately, the distributing characteristics of the charges on the bomb body with capacitance fuze were explored. Continuous charges were analyzed disp...For establishing the equation of the capacitive target detection accurately, the distributing characteristics of the charges on the bomb body with capacitance fuze were explored. Continuous charges were analyzed dispersively. Based on the Coulomb's law, the dynamic equilibrium equations of the inducing charges on the bomb body were set up. For the four cases of d 0/L (the ratio between the electrode distance and the bomb length), the curves of the charge's distribution were given. It was concluded that: ① the charge density decreases steadily from the end near the frontal electrode to the bomb tail; ② the declining rate of the density is governed by d 0/L , the larger the value of d 0/L ,the higher the declining rate, and vice versa.展开更多
In order to initiate the flight immediately when it reaches the top of the pedrail vehicle, technical parameters of radiometer have been designed and speedy effective signal processing method has been adopted. After a...In order to initiate the flight immediately when it reaches the top of the pedrail vehicle, technical parameters of radiometer have been designed and speedy effective signal processing method has been adopted. After analyzing the difference of signal characteristic between the main jam and the target, a method of identifying target in time domain is given. The target distinguishing rules are set up by extracting the magnitude, the slope and the width of the signal, combining with distinguishing the dimension of the target. The result of the theoretic analysis shows that the detecting scheme adopted can ensure the detector to identify and orientate the pedrail vehi cle's top armour, as well as control the detonation precisely.展开更多
Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infr...Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infrared target intrusion detection algorithm based on feature fusion and enhancement was proposed.This algorithm combines static target mode analysis and dynamic multi-frame correlation detection to extract infrared target features at different levels.Among them,LBP texture analysis can be used to effectively identify the posterior feature patterns which have been contained in the target library,while motion frame difference method can detect the moving regions of the image,improve the integrity of target regions such as camouflage,sheltering and deformation.In order to integrate the advantages of the two methods,the enhanced convolutional neural network was designed and the feature images obtained by the two methods were fused and enhanced.The enhancement module of the network strengthened and screened the targets,and realized the background suppression of infrared images.Based on the experiments,the effect of the proposed method and the comparison method on the background suppression and detection performance was evaluated,and the results showed that the SCRG and BSF values of the method in this paper had a better performance in multiple data sets,and it’s detection performance was far better than the comparison algorithm.The experiment results indicated that,compared with traditional infrared target detection methods,the proposed method could detect the infrared invasion target more accurately,and suppress the background noise more effectively.展开更多
RGD peptides has been used to detect cell surface integrin and direct clinical effective therapeutic drug selection. Herein we report that a quick one step detection of cell surface marker that was realized by a speci...RGD peptides has been used to detect cell surface integrin and direct clinical effective therapeutic drug selection. Herein we report that a quick one step detection of cell surface marker that was realized by a specially designed NiF e-based magnetic biosensing cell chip combined with functionalized magnetic nanoparticles. Magnetic nanoparticles with 20-30 nm in diameter were prepared by coprecipitation and modified with RGD-4C, and the resultant RGD-functionalized magnetic nanoparticles were used for targeting cancer cells cultured on the NiF e-based magnetic biosensing chip and distinguish the amount of cell surface receptor-integrin.Cell lines such as Calu3, Hela, A549, CaF br, HEK293 and HUVEC exhibiting different integrin expression were chosen as test samples. Calu3, Hela, HEK293 and HUVEC cells were successfully identified. This approach has advantages in the qualitative screening test. Compared with traditional method, it is fast, sensitive, low cost,easy-operative, and needs very little human intervention. The novel method has great potential in applications such as fast clinical cell surface marker detection, and diagnosis of early cancer, and can be easily extended to other biomedical applications based on molecular recognition.展开更多
Detecting target echo in the existence of self-screen jamming is a challenging work for radar system, especially when digital radio frequency memory(DRFM) technique is employed that mixes the jamming and target echo b...Detecting target echo in the existence of self-screen jamming is a challenging work for radar system, especially when digital radio frequency memory(DRFM) technique is employed that mixes the jamming and target echo both in spatial and time-frequency domain. The conventional way to solve this problem would suffer from performance degradation when physical target(PT) and false target(FT) are superposed in time. In this paper, we propose a new spatial filter according to the different correlation characteristic between PT and FT. The filter takes the ratio of expected signal power to expected jamming and noise power as the objective function under the constant filter modulus constraint. The optimal filter coefficients are derived with a generalized rayleigh quotient approach. Moreover, we analytically compute the target detection probability and demonstrate the applicability of the proposed method to the correlation coefficient. Monte Carlo simulations are provided to corroborate the proposed studies. Furthermore, the proposed method has simple architecture and low computation complexity, making it easily applied in modern radar system.展开更多
Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firs...Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firstly,considering the large-scale variation and camouflage of armored target,a new MS-RN integrating contextual information in battlefield environment is designed.The MS-RN extracts deep features from templates with different scales and strengthens the detection ability of small targets.Armored targets of different sizes are detected on different representation features.Secondly,aiming at the accuracy and real-time detection requirements,improved shape-fixed Guided Anchor is used on feature maps of different scales to recommend regions of interests(ROIs).Different from sliding or random anchor,the SF-GA can filter out 80% of the regions while still improving the recall.A special detection dataset for armored target,named Armored Target Dataset(ARTD),is constructed,based on which the comparable experiments with state-of-art detection methods are conducted.Experimental results show that the proposed method achieves outstanding performance in detection accuracy and efficiency,especially when small armored targets are involved.展开更多
A line laser with high power as the background light source for the design of a new photoelectric detection target is proposed in this paper, aiming to improve the detection ability of the traditional photoelectric de...A line laser with high power as the background light source for the design of a new photoelectric detection target is proposed in this paper, aiming to improve the detection ability of the traditional photoelectric detection target under low background illumination. The laser emitted pulse waveform function and the laser echo pulse response function were used to establish the mathematical model of the reflected echo power of projectile in the detection area and derive the calculation function of minimum detectable echo power in the line laser detection screen, according to information of the line laser emitted power, incident angle of projectile, duration time and detection distance of projectile passing through the line laser detection screen. Calculations and experimental results showed that the design method of line laser detection screen and calculation model of laser echo power are reasonable, and the detection ability of line laser detection screen is obviously higher than that of traditional photoelectric detection screen, especially in low background illumination;at the same time, the designed line laser detection screen was used to combine a six line laser detection screen intersection test system, based on live ammunition for shooting. The test system is stable and able to obtain the dynamic parameters of the flying projectile, verifying that the design of the line laser detection screen in new photoelectric detection target can be suitable for shooting range test applications.展开更多
In this paper,a non-contact auto-focusing method is proposed for the essential function of auto-focusing in mobile devices.Firstly,we introduce an effective target detection method combining the 3-frame difference alg...In this paper,a non-contact auto-focusing method is proposed for the essential function of auto-focusing in mobile devices.Firstly,we introduce an effective target detection method combining the 3-frame difference algorithm and Gauss mixture model,which is robust for complex and changing background.Secondly,a stable tracking method is proposed using the local binary patter feature and camshift tracker.Auto-focusing is achieved by using the coordinate obtained during the detection and tracking procedure.Experiments show that the proposed method can deal with complex and changing background.When there exist multiple moving objects,the proposed method also has good detection and tracking performance.The proposed method implements high efficiency,which means it can be easily used in real mobile device systems.展开更多
文摘A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.
基金supported by the National Key R&D Program of China(2021YFF0501102)the National Natural Science Foundation of China(52372308,U2368202,U1934219,52202392,52022010,U22A2046,52172322,and 62271486).
文摘The sliding chairs are important components that support the switch rail conversion in the railway turnout.Due to the harsh environmental erosion and the attack from the wheel vibration,the failure rate of the sliding chairs accounts for up to 10%of the total failure number in turnout.However,there is little research carried out in the existing literature to diagnose the deterioration states of the sliding chairs.To fill out this gap,by utilizing the images containing the sliding chairs,we propose an improved You Only Look Once version 7(YOLOv7)to identify the state of the sliding chairs.Specifically,to meet the challenge brought by the small inter-class differences among the sliding chair states,we first integrate the Convolutional Block Attention Module(CBAM)into the YOLOv7 backbone to screen the information conducive to state identification.Then,an extra detector for a small object is customized into the YOLOv7 network in order to detect the small-scale sliding chairs in images.Meanwhile,we revise the localization loss in the objective function as the Efficient Intersection over Union(EIoU)to optimize the design of the aspect ratio,which helps the localization of the sliding chairs.Next,to address the issue caused by the varying scales of the sliding chairs,we employ K-means++to optimize the priori selection of the initial anchor boxes.Finally,based on the images collected from real-world turnouts,the proposed method is verified and the results show that our method outperforms the basic YOLOv7 in the state identification of the sliding chairs with 4%improvements in terms of both mean Average Precision@0.5(mAP@0.5)and F1-score.
基金the National Natural Science Foundation of China(Grant No.12072261)。
文摘In the engineering field,switching systems have been extensively studied,where sudden changes of parameter value and structural form have a significant impact on the operational performance of the system.Therefore,it is important to predict the behavior of the switching system,which includes the accurate detection of mutation points and rapid reidentification of the model.However,few efforts have been contributed to accurately locating the mutation points.In this paper,we propose a new measure of mutation detection—the threshold-based switching index by analogy with the Lyapunov exponent.We give the algorithm for selecting the optimal threshold,which greatly reduces the additional data collection and the relative error of mutation detection.In the system identification part,considering the small data amount available and noise in the data,the abrupt sparse Bayesian regression(abrupt-SBR)method is proposed.This method captures the model changes by updating the previously identified model,which requires less data and is more robust to noise than identifying the new model from scratch.With two representative dynamical systems,we illustrate the application and effectiveness of the proposed methods.Our research contributes to the accurate prediction and possible control of switching system behavior.
文摘The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving targets is constructed. Based on this model, th e features of moving target imaging are introduced and the effects of target mov ement to SAR imaging are analyzed. Then the development and the status of this t echnique are reviewed in detail. Finally, some frontiers of this field are point ed out.
文摘The method of volume identification in pneumatics was studied through theoretical analysis and experimental investigation. Regarding discharging from a container as a thermodynamic process with invariable index the dependence of the container’s volume on the pressure in the container and the index, during discharging at the velocity of sound, is deduced. Then through a lot of experiments, the value of index n of the process is found with a given precision and a specified volume range. Furthermore, the feasibility and practicability of this method are verified by experiments.
基金supported by National Natural Science Foundation(grant 61573374)。
文摘Sensor scheduling is used to improve the sensing performance in the estimation of targets’states.However,few papers are on the sensor scheduling for target detection with guiding information.This letter can remedy this deficiency.A risk-based target detection method with guiding information is provided firstly,based on which,the sensor scheduling approach is aiming at reducing the risk and uncertainty in target detection,namely risk-based sensor scheduling method.What should be stressed is that the Prediction Formula in sensor scheduling is proposed.Lastly,some examples are conducted to stress the effectiveness of this proposed method.
文摘This paper presents an investigation on the effect of JPEG compression on the similarity between the target image and the background,where the similarity is further used to determine the degree of clutter in the image.Four new clutter metrics based on image quality assessment are introduced,among which the Haar wavelet-based perceptual similarity index,known as HaarPSI,provides the best target acquisition prediction results.It is shown that the similarity between the target and the background at the boundary between visually lossless and visually lossy compression does not change significantly compared to the case when an uncompressed image is used.In future work,through subjective tests,it is necessary to check whether this presence of compression at the threshold of just noticeable differences will affect the human target acquisition performance.Similarity values are compared with the results of subjective tests of the well-known target Search_2 database,where the degree of agreement between objective and subjective scores,measured through linear correlation,reached a value of 90%.
基金supported by Project of the Xi’an Science and Technology Innovation talent service enterprise project(No.2020KJRC0041)National Natural Science Foundation of China(No.62073256)Key Programs of Shaanxi Science and Technology Department(No.2020GY-125)。
文摘Multi-element array photoelectric detector is the core devices to form a photoelectric detection target with a large field of view.This photoelectric detection target brings about the problem of uneven detection sensitivity distribution in the detection screen.To improve the uneven detection sensitivity of this photoelectric detection target,this paper analyzes the distribution law of the uneven detection sensitivity of the photoelectric detection target using the multi-element array photoelectric detector,dissects the main factors affecting the detection sensitivity according to the photoelectric detection principle,establishes the calculation model of detection sensitivity of the photoelectric detection target in the different detection areas and proposes a method to improve the detection sensitivity by compensating the gain of each unit photoelectric detector.The analysis of simulation and experimental results show that the proposed method of photoelectric detection target can effectively improve the output signal amplitude of the projectile under the certain detection distance,in particular,the output signal amplitude of the projectile is significantly increased when the projectile passes through the detection blind area.The experimental results are consistent with the simulation results,which verify the effectiveness of the proposed improvement method.
文摘Modal and damage identification based on ambient excitation can greatly improve the efficiency of high-speed railway bridge vibration detection.This paper first describes the basic principles of stochastic subspace identification,peak-picking,and frequency domain decomposition method in modal analysis based on ambient excitation,and the effectiveness of these three methods is verified through finite element calculation and numerical simulation,Then the damage element is added to the finite element model to simulate the crack,and the curvature mode difference and the curvature mode area difference square ratio are calculated by using the stochastic subspace identification results to verify their ability of damage identification and location.Finally,the above modal and damage identification techniques are integrated to develop a bridge modal and damage identification software platform.The final results show that all three modal identification methods can accurately identify the vibration frequency and mode shape,both damage identification methods can accurately identify and locate the damage,and the developed software platform is simple and efficient.
文摘In recent years,with the development of synthetic aperture radar(SAR)technology and the widespread application of deep learning,lightweight detection of SAR images has emerged as a research direction.The ultimate goal is to reduce computational and storage requirements while ensuring detection accuracy and reliability,making it an ideal choice for achieving rapid response and efficient processing.In this regard,a lightweight SAR ship target detection algorithm based on YOLOv8 was proposed in this study.Firstly,the C2f-Sc module was designed by fusing the C2f in the backbone network with the ScConv to reduce spatial redundancy and channel redundancy between features in convolutional neural networks.At the same time,the Ghost module was introduced into the neck network to effectively reduce model parameters and computational complexity.A relatively lightweight EMA attention mechanism was added to the neck network to promote the effective fusion of features at different levels.Experimental results showed that the Parameters and GFLOPs of the improved model are reduced by 8.5%and 7.0%when mAP@0.5 and mAP@0.5:0.95 are increased by 0.7%and 1.8%,respectively.It makes the model lightweight and improves the detection accuracy,which has certain application value.
基金National Natural Science Foundation of China(61774120)
文摘In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on temporal profiles is presented that addresses the temporal characteristics of the target and background pixels to eliminate the large variation of background temporal profiles. Firstly, the temporal behaviors of different types of image pixels of practical infrared scenes are analyzed.Then, the new local and global variance filter is proposed. The baseline of the fluctuation level of background temporal profiles is obtained by using the local and global variance filter. The height of the target pulse signal is extracted by subtracting the baseline from the original temporal profiles. Finally, a new target detection criterion is designed. The proposed method is applied to detect dim and small targets in practical infrared sequence images. The experimental results show that the proposed algorithm has good detection performance for dim moving small targets in the complex background.
基金Supported by the CNPC Basic and Prospective Key Scientific and Technological Project (2021DJ24)。
文摘The history and results of petroleum exploration in the Santos Basin, Brazil are reviewed. The regularity of hydrocarbon enrichment and the key exploration technologies are summarized and analyzed using the seismic, gravity, magnetic and drilling data. It is proposed that the Santos Basin had a structural pattern of two uplifts and three depressions and the Aram-Uirapuru uplift belt controlled the hydrocarbon accumulation. It is believed that the main hydrocarbon source kitchen in the rift period controlled the hydrocarbon-enriched zones, paleo-structures controlled the scale and quality of lacustrine carbonate reservoirs, and continuous thick salt rocks controlled the hydrocarbon formation and preservation. The process and mechanism of reservoirs being transformed by CO_(2)charging were revealed. Five key exploration technologies were developed,including the variable-velocity mapping for layer-controlled facies-controlled pre-salt structures, the prediction of lacustrine carbonate reservoirs, the prediction of intrusive/effusive rock distribution, the detection of hydrocarbons in lacustrine carbonates, and the logging identification of supercritical CO_(2)fluid. These theoretical recognitions and exploration technologies have contributed to the discovery of deep-water super-large reservoirs under CNODC projects in Brazil, and will guide the further exploration of deep-water large reservoirs in the Santos Basin and other similar regions.
文摘For establishing the equation of the capacitive target detection accurately, the distributing characteristics of the charges on the bomb body with capacitance fuze were explored. Continuous charges were analyzed dispersively. Based on the Coulomb's law, the dynamic equilibrium equations of the inducing charges on the bomb body were set up. For the four cases of d 0/L (the ratio between the electrode distance and the bomb length), the curves of the charge's distribution were given. It was concluded that: ① the charge density decreases steadily from the end near the frontal electrode to the bomb tail; ② the declining rate of the density is governed by d 0/L , the larger the value of d 0/L ,the higher the declining rate, and vice versa.
文摘In order to initiate the flight immediately when it reaches the top of the pedrail vehicle, technical parameters of radiometer have been designed and speedy effective signal processing method has been adopted. After analyzing the difference of signal characteristic between the main jam and the target, a method of identifying target in time domain is given. The target distinguishing rules are set up by extracting the magnitude, the slope and the width of the signal, combining with distinguishing the dimension of the target. The result of the theoretic analysis shows that the detecting scheme adopted can ensure the detector to identify and orientate the pedrail vehi cle's top armour, as well as control the detonation precisely.
基金This work was supported by the National Natural Science Foundation of China(grant number:61671470)the National Key Research and Development Program of China(grant number:2016YFC0802904)the Postdoctoral Science Foundation Funded Project of China(grant number:2017M623423).
文摘Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infrared target intrusion detection algorithm based on feature fusion and enhancement was proposed.This algorithm combines static target mode analysis and dynamic multi-frame correlation detection to extract infrared target features at different levels.Among them,LBP texture analysis can be used to effectively identify the posterior feature patterns which have been contained in the target library,while motion frame difference method can detect the moving regions of the image,improve the integrity of target regions such as camouflage,sheltering and deformation.In order to integrate the advantages of the two methods,the enhanced convolutional neural network was designed and the feature images obtained by the two methods were fused and enhanced.The enhancement module of the network strengthened and screened the targets,and realized the background suppression of infrared images.Based on the experiments,the effect of the proposed method and the comparison method on the background suppression and detection performance was evaluated,and the results showed that the SCRG and BSF values of the method in this paper had a better performance in multiple data sets,and it’s detection performance was far better than the comparison algorithm.The experiment results indicated that,compared with traditional infrared target detection methods,the proposed method could detect the infrared invasion target more accurately,and suppress the background noise more effectively.
基金supported by National Key Basic Research Program (973 Project) (No. 2010CB933901 and 2011CB933100)National 863 Hi-tech Project of China (No. 2012AA022703), National Natural Scientific Fund (No. 81225010, 81101169 and 31100717)Shanghai Nano project (13NM1401500), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110073120072)
文摘RGD peptides has been used to detect cell surface integrin and direct clinical effective therapeutic drug selection. Herein we report that a quick one step detection of cell surface marker that was realized by a specially designed NiF e-based magnetic biosensing cell chip combined with functionalized magnetic nanoparticles. Magnetic nanoparticles with 20-30 nm in diameter were prepared by coprecipitation and modified with RGD-4C, and the resultant RGD-functionalized magnetic nanoparticles were used for targeting cancer cells cultured on the NiF e-based magnetic biosensing chip and distinguish the amount of cell surface receptor-integrin.Cell lines such as Calu3, Hela, A549, CaF br, HEK293 and HUVEC exhibiting different integrin expression were chosen as test samples. Calu3, Hela, HEK293 and HUVEC cells were successfully identified. This approach has advantages in the qualitative screening test. Compared with traditional method, it is fast, sensitive, low cost,easy-operative, and needs very little human intervention. The novel method has great potential in applications such as fast clinical cell surface marker detection, and diagnosis of early cancer, and can be easily extended to other biomedical applications based on molecular recognition.
文摘Detecting target echo in the existence of self-screen jamming is a challenging work for radar system, especially when digital radio frequency memory(DRFM) technique is employed that mixes the jamming and target echo both in spatial and time-frequency domain. The conventional way to solve this problem would suffer from performance degradation when physical target(PT) and false target(FT) are superposed in time. In this paper, we propose a new spatial filter according to the different correlation characteristic between PT and FT. The filter takes the ratio of expected signal power to expected jamming and noise power as the objective function under the constant filter modulus constraint. The optimal filter coefficients are derived with a generalized rayleigh quotient approach. Moreover, we analytically compute the target detection probability and demonstrate the applicability of the proposed method to the correlation coefficient. Monte Carlo simulations are provided to corroborate the proposed studies. Furthermore, the proposed method has simple architecture and low computation complexity, making it easily applied in modern radar system.
基金supported by the National Key Research and Development Program of China under grant 2016YFC0802904National Natural Science Foundation of China under grant61671470the Postdoctoral Science Foundation Funded Project of China under grant 2017M623423。
文摘Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firstly,considering the large-scale variation and camouflage of armored target,a new MS-RN integrating contextual information in battlefield environment is designed.The MS-RN extracts deep features from templates with different scales and strengthens the detection ability of small targets.Armored targets of different sizes are detected on different representation features.Secondly,aiming at the accuracy and real-time detection requirements,improved shape-fixed Guided Anchor is used on feature maps of different scales to recommend regions of interests(ROIs).Different from sliding or random anchor,the SF-GA can filter out 80% of the regions while still improving the recall.A special detection dataset for armored target,named Armored Target Dataset(ARTD),is constructed,based on which the comparable experiments with state-of-art detection methods are conducted.Experimental results show that the proposed method achieves outstanding performance in detection accuracy and efficiency,especially when small armored targets are involved.
基金This work has been supported by Project of the National Natural Science Foundation of China(No.62073256,61773305)in part by the Key Science and Technology Program of Shaanxi Province(No.2020GY-125)Xi’an Science and Technology Innovation Talent Service Enterprise Project(No.2020KJRC0041).
文摘A line laser with high power as the background light source for the design of a new photoelectric detection target is proposed in this paper, aiming to improve the detection ability of the traditional photoelectric detection target under low background illumination. The laser emitted pulse waveform function and the laser echo pulse response function were used to establish the mathematical model of the reflected echo power of projectile in the detection area and derive the calculation function of minimum detectable echo power in the line laser detection screen, according to information of the line laser emitted power, incident angle of projectile, duration time and detection distance of projectile passing through the line laser detection screen. Calculations and experimental results showed that the design method of line laser detection screen and calculation model of laser echo power are reasonable, and the detection ability of line laser detection screen is obviously higher than that of traditional photoelectric detection screen, especially in low background illumination;at the same time, the designed line laser detection screen was used to combine a six line laser detection screen intersection test system, based on live ammunition for shooting. The test system is stable and able to obtain the dynamic parameters of the flying projectile, verifying that the design of the line laser detection screen in new photoelectric detection target can be suitable for shooting range test applications.
基金supported by ZTE Industry-Academia-Research Cooperation Funds
文摘In this paper,a non-contact auto-focusing method is proposed for the essential function of auto-focusing in mobile devices.Firstly,we introduce an effective target detection method combining the 3-frame difference algorithm and Gauss mixture model,which is robust for complex and changing background.Secondly,a stable tracking method is proposed using the local binary patter feature and camshift tracker.Auto-focusing is achieved by using the coordinate obtained during the detection and tracking procedure.Experiments show that the proposed method can deal with complex and changing background.When there exist multiple moving objects,the proposed method also has good detection and tracking performance.The proposed method implements high efficiency,which means it can be easily used in real mobile device systems.