-
题名换热网络设计方法的研究进展
被引量:16
- 1
-
-
作者
张俊峰
罗雄麟
-
机构
中国石油大学自动化研究所
-
出处
《化工进展》
EI
CAS
CSCD
北大核心
2005年第6期625-628,共4页
-
文摘
回顾了近年来换热网络设计研究的内容和方法。分析了当前求解换热网络最小公用工程设计的3种方法:传统的给定工艺条件的设计法、最近几年得到很大发展的弹性设计法和控制与工艺一体化设计法。阐述了这些方法各自的优势和尚待改进的问题,并指出换热网络的设计同时应考虑先进控制和动态优化,先进控制与工艺一体化换热网络设计是今后的发展方向。
-
关键词
换热网络
工艺设计
弹性设计
控制与工艺一体化设计
-
Keywords
heat exchanger network
designed methods on given process condition
flexible (design
) integration of process and control
-
分类号
TQ021.8
[化学工程]
-
-
题名电网覆冰防治方法和研究进展
被引量:137
- 2
-
-
作者
李再华
白晓民
周子冠
胡志军
许婧
李晓珺
-
机构
中国电力科学研究院
湖南省电力公司
-
出处
《电网技术》
EI
CSCD
北大核心
2008年第4期7-13,22,共8页
-
基金
国家重点基础研究发展计划项目(973项目)(2004CB217904)~~
-
文摘
分析了国内外电网几种典型的覆冰防治方案,总结了俄罗斯、加拿大和美国等的电网防冰方法及其进展情况,讨论了各种除冰防治方法的特点,重点讨论和比较了过电流融冰法、短路电流融冰法和直流电流融冰法3种大电流融冰方法的特点,提出了应重视电网防冰工作、加强实用技术研究、加强防冰工作的系统性和标准化研究以及输配电系统的鲁棒性建设的防治覆冰建议,以期为提高电网的安全可靠性、增强电网防冰减灾和防止其它类似自然灾害的能力提供参考。
-
关键词
输电线路
覆冰
防冰设计
除冰操作规范
大电流融冰法
冰情监测
-
Keywords
transmission line
icing
anti-icing design
de-icing process standard
large current ice-melting method
ice condition supervising
-
分类号
TM852
[电气工程—高电压与绝缘技术]
-
-
题名基于工作过程的课程设计方法及实施条件分析
被引量:143
- 3
-
-
作者
高林
鲍洁
王莉方
-
机构
北京联合大学
-
出处
《职业技术教育》
2008年第13期50-53,共4页
-
基金
欧盟ASIA-LINK项目《Design of a Curriculum on Curriculum Development(简称DCCD)》,课题编号:CN/ASIA-LINK/005(84-893)
-
文摘
基于工作过程的课程设计方法的核心内容是“典型工作任务分析”和“工人专家访谈会”。使用该方法,职业教育课程开发者可以对现代职业实际工作过程中的典型工作任务进行整体化的深入分析,并将分析结果应用到教学设计中,最终准确确定和描述典型工作任务对应的学习领域、职业教育的学习目标和学习内容,开发编制学习领域课程教学大纲,从而开发出工作过程系统化的职业教育课程,实现培养学生综合职业能力,特别是职业竞争力(设计与建构能力)的根本目的。
-
关键词
工作过程
课程设计方法
高等职业教育
实施条件
-
Keywords
working process
curriculum design method
higher vocational education
implementation conditions
-
分类号
G642.3
[文化科学—高等教育学]
-
-
题名表面等离子体无掩膜干涉光刻系统的数值分析(英文)
被引量:5
- 4
-
-
作者
董启明
郭小伟
-
机构
电子科技大学光电信息学院
-
出处
《光子学报》
EI
CAS
CSCD
北大核心
2012年第5期558-564,共7页
-
基金
The National Natural Science Foundation of China(No.60906052)
-
文摘
表面等离子体激元具有近场增强效应,可以代替光子作为曝光源形成纳米级特征尺寸的图像.本文数值分析了棱镜辅助表面等离子体干涉系统的参量空间,并给出了计算原理和方法.结果表明,适当地选择高折射率棱镜、低银层厚度、入射波长和光刻胶折射率,可以获得高曝光度、高对比度的干涉图像.入射波长为431nm时,选择40nm厚的银层,曝光深度可达200nm,条纹周期为110nm.数值分析结果为实验的安排提供了理论支持.
-
关键词
干涉光刻
表面等离子体激元
克莱舒曼结构
-
Keywords
Interference lithography
Surface plasmon plortiton
Kretschmann structureCLCN: TN305.7 Document Code:A Article ID:1004-4213(2012)05-0558-70 IntroductionThere is a growing interest in exploring new nanolithography techniques with high efficiency,low cost and large-area fabrication to fabricate nanoscale devices for nanotechnology applications.Conventional photolithography has remained a useful microfabrication technology because of its ease of repetition and suitability for large-area fabrication[1].The diffraction limit,however,restricts the fabrication scale of photolithography[2].Potential solutions that have actually been pursued require increasingly shorter illumination wavelengths for replicating smaller structures.It is becoming more difficult and complicated to use the short optical wavelengths to reach the desired feature sizes.Other methods such as electron beam lithography[3],ion beam lithography[4],scanning probe lithography[5],nanoimprint lithography(NIL)[6],and evanescent near-field optical lithography(ENFOL)[7] have been developed in order to achieve nanometer-scale features.As we know,the former three techniques need scanning and accordingly are highly inefficient.In NIL,the leveling of the imprint template and the substrate during the printing process,which determines the uniformity of the imprint result,is a challenging issue of this method.ENFOL have the potential to produce subwavelength structures with high efficiency,but it encounters the fact that the evanescent field decays rapidly through the aperture,thus attenuating the transmission intensity at the exit plane and limiting the exposure distance to the scale of a few tens of nanometers from the mask.In recent years,the use of surface-plasmon polaritons(SPPs) instead of photons as an exposure source was rapidly developed to fabricate nanoscale structures.SPPs are characterized by its near field enhancement so that SPP-based lithography can greatly extend exposure depth and improve pattern contrast.Grating-assisted SPP interference,such as SPP resonant interference nanolithography[8] and SPP-assisted interference nanolithography[9],achieved a sub-100nm interference pattern.The techniques,however,are necessary to fabricate a metal grating with a very fine period and only suitable for small-area interference.To avoid the fabrication of the metal grating,a prism-based SPP maskless interference lithography was proposed in 2006,which promises good lithography performance.The approach offers potential to achieve sub-65nm and even sub-32nm feature sizes.However,the structure parameters are always not ideal in a real system.one wants to know how much influence the parameter variations have on the pattern resolution and what variations of the parameters are allowed to obtain an effective interference.Thus,it is necessary to explore the parameter spaces.1 SPP maskless interference lithography systemThe SPP maskless interference lithography system is shown in Fig.1.A p-polarized laser is divided into two beams by a grating splitter,and then goes into the prism-based multilayer system.Under a given condition,the metal film can exhibit collective electron oscillations known as SPPs which are charge density waves that are characterized by intense electromagnetic fields confined to the metallic surface.If the metal layer Fig.1 Schematic for SPP maskless interference lithography systemis sufficiently thin,plasma waves at both metal interfaces are coupled,resulting in symmetric and antisymmetric SPPs.When the thickness h of metal film,dielectric constant ε1,ε2,ε3 of medium above,inside,below the metal film are specified,the coupling equation is shown as followstanh(S2h)(ε1ε3S22+ε22S1S3)+(ε1ε2S2S3+ε2ε3S1S2)=0
-
分类号
TN305.7
[电子电信—物理电子学]
-