Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pair...Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data.展开更多
In real space density functional theory calculations,the effective potential depends on the electron density,requiring self-consistent iterations,and numerous integrals at each step,making the process time-consuming.I...In real space density functional theory calculations,the effective potential depends on the electron density,requiring self-consistent iterations,and numerous integrals at each step,making the process time-consuming.In our research,we propose an optimization method to expedite density functional theory(DFT)calculations for systems with large aspect ratios,such as metallic nanorods,nanowires,or scanning tunneling microscope tips.This method focuses on employing basis set to expand the electron density,Coulomb potential,and exchange-correlation potential.By precomputing integrals and caching redundant results,this expansion streamlines the integration process,significantly accelerating DFT computations.As a case study,we have applied this optimization to metallic nanorod systems of various radii and lengths,obtaining corresponding ground-state electron densities and potentials.展开更多
Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean...Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean field treatment is taken into account by the simulation-based empirical correlations.The application of this method to confined argon in slit pore shows that its prediction agrees well with the simulation results,and that it performs better than the original PG theory as well as the local averaged density model(LADM).In its further application to the nano-fluidic films,the influences of fluid parameters and pore parameters on the thermal conductivity are calculated and investigated.It is found that both the local thermal conductivity and the overall thermal conductivity can be significantly modulated by these parameters.Specifically,in the supercritical states,the thermal conductivity of the confined fluid shows positive correlation to the bulk density as well as the temperature.However,when the bulk density is small,the thermal conductivity exhibits a decrease-increase transition as the temperature is increased.This is also the case in which the temperature is low.In fact,the decrease-increase transition in both the small-bulk-density and low-temperature cases arises from the capillary condensation in the pore.Furthermore,smaller pore width and/or stronger adsorption potential can raise the critical temperature for condensation,and then are beneficial to the enhancement of the thermal conductivity.These modulation behaviors of the local thermal conductivity lead immediately to the significant difference of the overall thermal conductivity in different phase regions.展开更多
We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implemen...We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations.展开更多
The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition...The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition probability is implemented for the first time in semiclassical approximation based on the microscopically calculated electric octupole moments.The available data,including the I-ωrelation and electric transitional probabilities B(E2)and B(E3)are well reproduced.Furthermore,it is shown that the ground state of 144Ba exhibits axial octupole and quadrupole deformations that persist up to high spins(I≈24h).展开更多
The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted ...The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations.展开更多
In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial meth...In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial method using single-particle level schemes obtained from the CDFT,and the level densities are then obtained by considering collective effects such as vibration and rotation.Our results are compared with those of other NLD models,including phenomenological,microstatisti-cal and nonrelativistic Hartree–Fock–Bogoliubov combinatorial models.This comparison suggests that the general trends among these models are essentially the same,except for some deviations among the different NLD models.In addition,the NLDs obtained using the CDFT combinatorial method with normalization are compared with experimental data,including the observed cumulative number of levels at low excitation energies and the measured NLDs.The CDFT combinatorial method yields results that are in reasonable agreement with the existing experimental data.展开更多
We report on a temperature-dependent resonance Raman spectral characterization of the polyene chain of canthax- anthin. It is observed that all vibrational intensities of the polyene chain are inversely proportional t...We report on a temperature-dependent resonance Raman spectral characterization of the polyene chain of canthax- anthin. It is observed that all vibrational intensities of the polyene chain are inversely proportional to temperature, which is analyzed by the resonance Raman effect and the coherent weakly damped electron/lattice vibrations. The increase in intensity of the CC overtone/combination relative to the fundamental with temperature decreasing is detected and discussed in terms of electron/phonon coupling and the activation energy Uop. Moreover, the polyene chain studies using the density functional theory B3LYP/6-31 G* level reveal a prominent peak at 1525 cm-1 consisting of two closely spaced modes that are both dominated by C=C stretching coordinates of the polyene chain.展开更多
The crystal structure of L-glutamine is stabilized by a three-dimensional network of intermolecular hydrogen bonds.We utilize plane-wave density functional theory lattice-dynamics calculations within the generalized-g...The crystal structure of L-glutamine is stabilized by a three-dimensional network of intermolecular hydrogen bonds.We utilize plane-wave density functional theory lattice-dynamics calculations within the generalized-gradient approximation(GGA), Perdew–Burke–Ernzerhof(PBE), PBE for solids(PBEsol), PBE with Wu–Cohen exchange(WC), and dispersion-corrected PBE, to investigate the effect of these intermolecular contacts on the absorption spectra of glutamine in the terahertz frequency range. Among these calculations, the solid-state simulated results obtained using the WC method exhibit a good agreement with the measured absorption spectra, and the absorption features are assigned with the help of WC. This indicates that the vibrational modes of glutamine were related to the combination of intramolecular and intermolecular motions, the intramolecular modes were dominated by rocking or torsion involving functional groups; the intermolecular modes mainly result from the translational motions of individual molecules, and the rocking of the hydrogenbonded functional groups.展开更多
To get deep understanding of the reaction mechanism of coal pyrolysis in hydrogen plasma, the decomposition reaction pathways of aliphatic hydrocarbons and cycloalkanes, which are two main components in volatiles from...To get deep understanding of the reaction mechanism of coal pyrolysis in hydrogen plasma, the decomposition reaction pathways of aliphatic hydrocarbons and cycloalkanes, which are two main components in volatiles from coal, were investigated. Methane and cyclohexane were chosen as the model compounds. Density functional theory was employed, and many reaction pathways were involved. Calculations were carried out in Gaussian 09 at the B3LYP/6-31G(d,p) level of the theory. The results indicate that the main pyrolysis products of methane and cyclohexane in hydrogen plasma are both hydrogen and acetylene, and the participation of active hydrogen atoms makes dehydrogenation reactions more favorable. H2 mainly comes from dehydrogenation process, while many reaction pathways are responsible for acetylene formation. During coal pyrolysis in hydrogen plasma, three main components in volatiles like aliphatic hydrocarbons, cycloalkanes and aromatic hydrocarbons lead to the formation of hydrogen and acetylene, but their contributions to products distribution are different.展开更多
The structures of the heptazine-based graphitic C3N4 and the S-doped graphitic C3N4 are investigated by using the density functional theory with a semi-empirical dispersion correction for the weak long-range interacti...The structures of the heptazine-based graphitic C3N4 and the S-doped graphitic C3N4 are investigated by using the density functional theory with a semi-empirical dispersion correction for the weak long-range interaction between layers.The corrugated structure is found to be energetically favorable for both the pure and the S-doped graphitic C3N4.The S doptant is prone to substitute the N atom bonded with only two nearest C atoms.The band structure calculation reveals that this kind of S doping causes a favorable red shift of the light absorption threshold and can improve the electroconductibility and the photocatalytic activity of the graphitic C3N4.展开更多
Chemical concepts such as structure,bonding,reactivity,etc.have been widely used in the literature and text books to appreciate molecular properties and chemical transformations.Even though modern theoretical and comp...Chemical concepts such as structure,bonding,reactivity,etc.have been widely used in the literature and text books to appreciate molecular properties and chemical transformations.Even though modern theoretical and computational chemistry is well established from the perspective of accuracy and complexity,how to quantify these concepts is a still unresolved task.Conceptual density functional theory and its related recent developments provide unique opportunities to tackle this problem.In this Special Issue,27 contributions from top investigators over the world are collected to highlight the state-of-art research on this topic,which not only showcases the status of where we are now but also unveils a number to possible future directions to be pursued.展开更多
Density functional theory (DFT) calculations are employed to explore the NO2-sensing mechanisms of pure and Ti-doped WO3 (002) surfaces. When Ti is doped into the WO3 surface, two substitution models are considere...Density functional theory (DFT) calculations are employed to explore the NO2-sensing mechanisms of pure and Ti-doped WO3 (002) surfaces. When Ti is doped into the WO3 surface, two substitution models are considered: substitution of Ti for W6c and substitution of Ti for Wsc. The results reveal that substitution of Ti for 5-fold W forms a stable doping structure, and doping induces some new electronic states in the band gap, which may lead to changes in the surface properties. Four top adsorption models of NO2 on pure and Ti-doped WO3 (002) surfaces are investigated: adsorptions on 5-fold W (Ti), on 6-fold W, on bridging oxygen, and on plane oxygen. The most stable and likely NO2 adsorption structures are both N-end oriented to the surface bridge oxygen Olc site. By comparing the adsorption energy and the electronic population, it is found that Ti doping can enhance the adsorption of NO2, which theoretically proves the experimental observation that Ti doping can greatly increase the WO3 gas sensor sensitivity to NO2 gas.展开更多
The geometries of MgnNi2(n = 1 6) clusters are studied by using the hybrid density functional theory (B3LYP) with LANL2DZ basis sets. For the ground-state structures of MgnNi2 clusters, the stabilities and the ele...The geometries of MgnNi2(n = 1 6) clusters are studied by using the hybrid density functional theory (B3LYP) with LANL2DZ basis sets. For the ground-state structures of MgnNi2 clusters, the stabilities and the electronic properties are investigated. The results show that the groundstate structures and symmetries of Mg clusters change greatly due to the Ni atoms. The average binding energies have a growing tendency while the energy gaps have a declining tendency. In addition, the ionization energies exhibit an odd-even oscillation feature. We also conclude that n = 3, 5 are the magic numbers of the MgnNi2 clusters. The Mg3Ni2 and Mg5Ni2 clusters are more stable than neighbouring clusters, and the MgaNi2 cluster exhibits a higher chemical activity.展开更多
This paper applies a density functional theory (DFT) and grand canonical Monte Carlo simulations (GCMC) to investigate the physisorptions of molecular hydrogen in single-walled BC3 nanotubes and carbon nanotubes. ...This paper applies a density functional theory (DFT) and grand canonical Monte Carlo simulations (GCMC) to investigate the physisorptions of molecular hydrogen in single-walled BC3 nanotubes and carbon nanotubes. The DFT calculations may provide useful information about the nature of hydrogen adsorption and physisorption energies in selected adsorption sites of these two nanotubes. Furthermore, the GCMC simulations can reproduce their storage capacity by calculating the weight percentage of the adsorbed molecular hydrogen under different conditions. The present results have shown that with both computational methods, the hydrogen storage capacity of BC3 nanotubes is superior to that of carbon nanotubes. The reasons causing different behaviour of hydrogen storage in these two nanotubes are explained by using their contour plots of electron density and charge-density difference.展开更多
The density functional theory (DFT) and periodic slab model were used to get information concerning the adsorption of HCHO on the FeO(100) surface. A preferred η^2-(C,O)-di-σ four-membered ring adsorption conf...The density functional theory (DFT) and periodic slab model were used to get information concerning the adsorption of HCHO on the FeO(100) surface. A preferred η^2-(C,O)-di-σ four-membered ring adsorption conformation on the Fe-top site was found to be the most favorable structure with the predicted adsorption energy of 210.7 kJ/mol. The analysis of density of states, Mulliken population, and vibrational frequencies before and after adsorption showed clear weakening of the carbonyl bond, and high sp^3 character on the carbon atom.展开更多
Titanium dioxide with CoB amorphous alloys nanoparticles deposited on the surface is known to exhibit higher catalytic activity than the CoB amorphous.A study of the structure of such system is necessary to understand...Titanium dioxide with CoB amorphous alloys nanoparticles deposited on the surface is known to exhibit higher catalytic activity than the CoB amorphous.A study of the structure of such system is necessary to understand this effect.A quantum chemical study of Co2B2 on the TiO2(110) surface was studied using periodic slab model within the framework of density functional theory(DFT).The results of geometry optimization indicated that the most stable model of adsorption was Co2B2 cluster adsorbed on the hollow site of TiO2 .The adsorption energy calculated for Co2B2 on the hollow site was 439.3 kJ/mol.The adsorption of CO and O2 was further studied and the results indicated that CO and O2 are preferred to adsorb on the Co2 site.Co-adsorption of CO and O2 shows that Co2B2 /TiO2 is a good catalyst for the oxidation of CO to carbon dioxide in the presence of oxygen.展开更多
The phase transition of gallium phosphide (GAP) from zinc-blende (ZB) to a rocksalt (RS) structure is investigated by the plane-wave pseudopotential density functional theory (DFT). Lattice constant a0, elasti...The phase transition of gallium phosphide (GAP) from zinc-blende (ZB) to a rocksalt (RS) structure is investigated by the plane-wave pseudopotential density functional theory (DFT). Lattice constant a0, elastic constants cij, bulk modulus B0 and the pressure derivative of bulk modulus B0 are calculated. The results are in good agreement with numerous experimental and theoretical data. From the usual condition of equal enthalpies, the phase transition from the ZB to the RS structure occurs at 21.9 GPa, which is close to the experimental value of 22.0 GPa. The elastic properties of GaP with the ZB structure in a pressure range from 0 GPa to 21.9 GPa and those of the RS structure in a pressure range of pressures from 21.9 GPa to 40 GPa are obtained. According to the quasi-harmonic Debye model, in which the phononic effects are considered, the normalized volume V/Vo, the Debye temperature 8, the heat capacity Cv and the thermal expansion coefficient a are also discussed in a pressure range from 0 CPa to 40 GPa and a temperature range from 0 K to 1500 K.展开更多
The formation mechanism of methane (CH4) during coal evolution has been investigated by density functional theory (DFT) of quantum chemistry. Thermogenic gas, which is generated during the thermal evolution of med...The formation mechanism of methane (CH4) during coal evolution has been investigated by density functional theory (DFT) of quantum chemistry. Thermogenic gas, which is generated during the thermal evolution of medium rank coal, is the main source of coalbed methane (CBM). Ethylbenzene (A) and 6,7-dimethyl-5,6,7,8-tetrahydro-1-hydroxynaphthalene (B) have been used as model compounds to study the pyrolysis mechanism of highly volatile bituminous coal (R), according to the similarity of bond orders and bond lengths. All possible paths are designed for each model. It can be concluded that the activation energies for H-assisted paths are lower than others in the process of methane formation; an H radical attacking on β-C to yield CH4 is the dominant path for the formation of CH4 from highly volatile bituminous coal. In addition, the calculated results also reveal that the positions on which H radical attacks and to which intramolecular H migrates have effects on methyl cleavage.展开更多
A density functional theory (DFT) study has been conducted in this work to investigate the pyrolysis pathways of propane and n-butane, which are the main components of liquefied petroleum gas (LPG), for better und...A density functional theory (DFT) study has been conducted in this work to investigate the pyrolysis pathways of propane and n-butane, which are the main components of liquefied petroleum gas (LPG), for better understanding the pyrolysis behavior of LPG in hydrogen thermal plasma. Over 60 possible reactions are considered. The reaction enthalpies and activation energies of these reactions are calculated and analyzed with a Gaussian method of B3LYP and basic set of 6-31G (d,p). A most possible reaction pathway is brought up. According to this reaction pathway, the main products of LPG pyrolysis are acetylene, ethylene, methane, ethane and extra hydrogen. Acetylene mainly comes from the pyrolysis of propylene and ethylene, and hydrogen abstraction reactions are the main source of extra hydrogen gas. Active H. radicals are found to play a very important role in many reactions, and they can remarkably lower the energies needed for reactions.展开更多
基金supported by the National Key R&D Program of China(No.2022YFA1602000)National Natural Science Foundation of China(Nos.12275081,U2067205,11790325,and U1732138)the Continuous-support Basic Scientific Research Project。
文摘Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0211303)the National Natural Science Foundation of China(Grant No.91850207)the numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University.
文摘In real space density functional theory calculations,the effective potential depends on the electron density,requiring self-consistent iterations,and numerous integrals at each step,making the process time-consuming.In our research,we propose an optimization method to expedite density functional theory(DFT)calculations for systems with large aspect ratios,such as metallic nanorods,nanowires,or scanning tunneling microscope tips.This method focuses on employing basis set to expand the electron density,Coulomb potential,and exchange-correlation potential.By precomputing integrals and caching redundant results,this expansion streamlines the integration process,significantly accelerating DFT computations.As a case study,we have applied this optimization to metallic nanorod systems of various radii and lengths,obtaining corresponding ground-state electron densities and potentials.
基金Project supported by the Fundamental Research Fund for the Central Universities of Chinathe Research Project for Independently Cultivate Talents of Hebei Agricultural University (Grant No.ZY2023007)。
文摘Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean field treatment is taken into account by the simulation-based empirical correlations.The application of this method to confined argon in slit pore shows that its prediction agrees well with the simulation results,and that it performs better than the original PG theory as well as the local averaged density model(LADM).In its further application to the nano-fluidic films,the influences of fluid parameters and pore parameters on the thermal conductivity are calculated and investigated.It is found that both the local thermal conductivity and the overall thermal conductivity can be significantly modulated by these parameters.Specifically,in the supercritical states,the thermal conductivity of the confined fluid shows positive correlation to the bulk density as well as the temperature.However,when the bulk density is small,the thermal conductivity exhibits a decrease-increase transition as the temperature is increased.This is also the case in which the temperature is low.In fact,the decrease-increase transition in both the small-bulk-density and low-temperature cases arises from the capillary condensation in the pore.Furthermore,smaller pore width and/or stronger adsorption potential can raise the critical temperature for condensation,and then are beneficial to the enhancement of the thermal conductivity.These modulation behaviors of the local thermal conductivity lead immediately to the significant difference of the overall thermal conductivity in different phase regions.
文摘We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations.
基金supported by the National Natural Science Foundation of China(NSFC)(No.12205097)the Fundamental Research Funds for the Central Universities(No.2024MS071)。
文摘The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition probability is implemented for the first time in semiclassical approximation based on the microscopically calculated electric octupole moments.The available data,including the I-ωrelation and electric transitional probabilities B(E2)and B(E3)are well reproduced.Furthermore,it is shown that the ground state of 144Ba exhibits axial octupole and quadrupole deformations that persist up to high spins(I≈24h).
基金supported by the National Natural Science Foundation of China(No.12205103)。
文摘The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations.
基金supported by the Natural Science Foundation of Jilin Province(No.20220101017JC)National Natural Science Foundation of China(No.11675063)Key Laboratory of Nuclear Data Foundation(JCKY2020201C157).
文摘In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial method using single-particle level schemes obtained from the CDFT,and the level densities are then obtained by considering collective effects such as vibration and rotation.Our results are compared with those of other NLD models,including phenomenological,microstatisti-cal and nonrelativistic Hartree–Fock–Bogoliubov combinatorial models.This comparison suggests that the general trends among these models are essentially the same,except for some deviations among the different NLD models.In addition,the NLDs obtained using the CDFT combinatorial method with normalization are compared with experimental data,including the observed cumulative number of levels at low excitation energies and the measured NLDs.The CDFT combinatorial method yields results that are in reasonable agreement with the existing experimental data.
基金supported by the National Natural Science Foundation of China(Grant Nos.10974067 and 11104107)the Program of Jilin Province Science and Technology Department,China(Grant Nos.20090534 and 20101508)the China Postdoctoral Science Foundation,China(Grant No.20110491320)
文摘We report on a temperature-dependent resonance Raman spectral characterization of the polyene chain of canthax- anthin. It is observed that all vibrational intensities of the polyene chain are inversely proportional to temperature, which is analyzed by the resonance Raman effect and the coherent weakly damped electron/lattice vibrations. The increase in intensity of the CC overtone/combination relative to the fundamental with temperature decreasing is detected and discussed in terms of electron/phonon coupling and the activation energy Uop. Moreover, the polyene chain studies using the density functional theory B3LYP/6-31 G* level reveal a prominent peak at 1525 cm-1 consisting of two closely spaced modes that are both dominated by C=C stretching coordinates of the polyene chain.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61302007 and 60977065)the Fundamental Research Funds for the Central Universities of China(Grant No.FRF-SD-12-016A)the Engineering Research Center of Industrial Spectrum Imaging of Beijing,China
文摘The crystal structure of L-glutamine is stabilized by a three-dimensional network of intermolecular hydrogen bonds.We utilize plane-wave density functional theory lattice-dynamics calculations within the generalized-gradient approximation(GGA), Perdew–Burke–Ernzerhof(PBE), PBE for solids(PBEsol), PBE with Wu–Cohen exchange(WC), and dispersion-corrected PBE, to investigate the effect of these intermolecular contacts on the absorption spectra of glutamine in the terahertz frequency range. Among these calculations, the solid-state simulated results obtained using the WC method exhibit a good agreement with the measured absorption spectra, and the absorption features are assigned with the help of WC. This indicates that the vibrational modes of glutamine were related to the combination of intramolecular and intermolecular motions, the intramolecular modes were dominated by rocking or torsion involving functional groups; the intermolecular modes mainly result from the translational motions of individual molecules, and the rocking of the hydrogenbonded functional groups.
基金supported by the National High Technology Research and Development Program of China(2009AA044701)the Program for Zhejiang Leading Team of S&T Innovation(2013TD07)
文摘To get deep understanding of the reaction mechanism of coal pyrolysis in hydrogen plasma, the decomposition reaction pathways of aliphatic hydrocarbons and cycloalkanes, which are two main components in volatiles from coal, were investigated. Methane and cyclohexane were chosen as the model compounds. Density functional theory was employed, and many reaction pathways were involved. Calculations were carried out in Gaussian 09 at the B3LYP/6-31G(d,p) level of the theory. The results indicate that the main pyrolysis products of methane and cyclohexane in hydrogen plasma are both hydrogen and acetylene, and the participation of active hydrogen atoms makes dehydrogenation reactions more favorable. H2 mainly comes from dehydrogenation process, while many reaction pathways are responsible for acetylene formation. During coal pyrolysis in hydrogen plasma, three main components in volatiles like aliphatic hydrocarbons, cycloalkanes and aromatic hydrocarbons lead to the formation of hydrogen and acetylene, but their contributions to products distribution are different.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB606403)the Doctoral Fund of the Ministry of Education of China (Grant No. 20090071120062)
文摘The structures of the heptazine-based graphitic C3N4 and the S-doped graphitic C3N4 are investigated by using the density functional theory with a semi-empirical dispersion correction for the weak long-range interaction between layers.The corrugated structure is found to be energetically favorable for both the pure and the S-doped graphitic C3N4.The S doptant is prone to substitute the N atom bonded with only two nearest C atoms.The band structure calculation reveals that this kind of S doping causes a favorable red shift of the light absorption threshold and can improve the electroconductibility and the photocatalytic activity of the graphitic C3N4.
基金We are immensely indebted to the Editor-in-Chief as well as the entire crew of the Editorial Office of Acta Physico-Chimica Sinica for making the Special Issue possible. I am in particular grateful to Dr. Xiaojuan Zhang, the Managing Editor, and Dr. Ying
文摘Chemical concepts such as structure,bonding,reactivity,etc.have been widely used in the literature and text books to appreciate molecular properties and chemical transformations.Even though modern theoretical and computational chemistry is well established from the perspective of accuracy and complexity,how to quantify these concepts is a still unresolved task.Conceptual density functional theory and its related recent developments provide unique opportunities to tackle this problem.In this Special Issue,27 contributions from top investigators over the world are collected to highlight the state-of-art research on this topic,which not only showcases the status of where we are now but also unveils a number to possible future directions to be pursued.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60771019 and 60801018)Tianjin Key Research Program of Application Foundation and Advanced Technology, China (Grant No. 11JCZDJC15300)+1 种基金Tianjin Natural Science Foundation, China (Grant No. 09JCYBJC01100)the New Teacher Foundation of the Ministry of Education, China(Grant No. 200800561109)
文摘Density functional theory (DFT) calculations are employed to explore the NO2-sensing mechanisms of pure and Ti-doped WO3 (002) surfaces. When Ti is doped into the WO3 surface, two substitution models are considered: substitution of Ti for W6c and substitution of Ti for Wsc. The results reveal that substitution of Ti for 5-fold W forms a stable doping structure, and doping induces some new electronic states in the band gap, which may lead to changes in the surface properties. Four top adsorption models of NO2 on pure and Ti-doped WO3 (002) surfaces are investigated: adsorptions on 5-fold W (Ti), on 6-fold W, on bridging oxygen, and on plane oxygen. The most stable and likely NO2 adsorption structures are both N-end oriented to the surface bridge oxygen Olc site. By comparing the adsorption energy and the electronic population, it is found that Ti doping can enhance the adsorption of NO2, which theoretically proves the experimental observation that Ti doping can greatly increase the WO3 gas sensor sensitivity to NO2 gas.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10676022)
文摘The geometries of MgnNi2(n = 1 6) clusters are studied by using the hybrid density functional theory (B3LYP) with LANL2DZ basis sets. For the ground-state structures of MgnNi2 clusters, the stabilities and the electronic properties are investigated. The results show that the groundstate structures and symmetries of Mg clusters change greatly due to the Ni atoms. The average binding energies have a growing tendency while the energy gaps have a declining tendency. In addition, the ionization energies exhibit an odd-even oscillation feature. We also conclude that n = 3, 5 are the magic numbers of the MgnNi2 clusters. The Mg3Ni2 and Mg5Ni2 clusters are more stable than neighbouring clusters, and the MgaNi2 cluster exhibits a higher chemical activity.
基金Project supported by Henan University of Technology Foundation (Grant No. 2009BS025)China Academy of Engineering Physics Foundation (Grant No. 2007B08008)
文摘This paper applies a density functional theory (DFT) and grand canonical Monte Carlo simulations (GCMC) to investigate the physisorptions of molecular hydrogen in single-walled BC3 nanotubes and carbon nanotubes. The DFT calculations may provide useful information about the nature of hydrogen adsorption and physisorption energies in selected adsorption sites of these two nanotubes. Furthermore, the GCMC simulations can reproduce their storage capacity by calculating the weight percentage of the adsorbed molecular hydrogen under different conditions. The present results have shown that with both computational methods, the hydrogen storage capacity of BC3 nanotubes is superior to that of carbon nanotubes. The reasons causing different behaviour of hydrogen storage in these two nanotubes are explained by using their contour plots of electron density and charge-density difference.
基金supported by the program for the NCETFJ (No. HX2006-103)the NSFC (Nos. 10676007 and 90922022)+1 种基金the Science and TechnologyFoundation of Fujian Education Bureau (No. JA08019)the Foundation of State Key Laboratory of Coal Combustion (No. FSKLCC0814)
文摘The density functional theory (DFT) and periodic slab model were used to get information concerning the adsorption of HCHO on the FeO(100) surface. A preferred η^2-(C,O)-di-σ four-membered ring adsorption conformation on the Fe-top site was found to be the most favorable structure with the predicted adsorption energy of 210.7 kJ/mol. The analysis of density of states, Mulliken population, and vibrational frequencies before and after adsorption showed clear weakening of the carbonyl bond, and high sp^3 character on the carbon atom.
基金supported by the program for the National Natural Science Foundation of China (90922022, 10676007, and 20773025)NCETFJ (No.HX2006-103)+1 种基金Science and Technology Foundation of Fujian Education Bureau (No. JA08019)Foundation of State Key Laboratory of Coal Combustion(No. FSKLCC0814)
文摘Titanium dioxide with CoB amorphous alloys nanoparticles deposited on the surface is known to exhibit higher catalytic activity than the CoB amorphous.A study of the structure of such system is necessary to understand this effect.A quantum chemical study of Co2B2 on the TiO2(110) surface was studied using periodic slab model within the framework of density functional theory(DFT).The results of geometry optimization indicated that the most stable model of adsorption was Co2B2 cluster adsorbed on the hollow site of TiO2 .The adsorption energy calculated for Co2B2 on the hollow site was 439.3 kJ/mol.The adsorption of CO and O2 was further studied and the results indicated that CO and O2 are preferred to adsorb on the Co2 site.Co-adsorption of CO and O2 shows that Co2B2 /TiO2 is a good catalyst for the oxidation of CO to carbon dioxide in the presence of oxygen.
文摘The phase transition of gallium phosphide (GAP) from zinc-blende (ZB) to a rocksalt (RS) structure is investigated by the plane-wave pseudopotential density functional theory (DFT). Lattice constant a0, elastic constants cij, bulk modulus B0 and the pressure derivative of bulk modulus B0 are calculated. The results are in good agreement with numerous experimental and theoretical data. From the usual condition of equal enthalpies, the phase transition from the ZB to the RS structure occurs at 21.9 GPa, which is close to the experimental value of 22.0 GPa. The elastic properties of GaP with the ZB structure in a pressure range from 0 GPa to 21.9 GPa and those of the RS structure in a pressure range of pressures from 21.9 GPa to 40 GPa are obtained. According to the quasi-harmonic Debye model, in which the phononic effects are considered, the normalized volume V/Vo, the Debye temperature 8, the heat capacity Cv and the thermal expansion coefficient a are also discussed in a pressure range from 0 CPa to 40 GPa and a temperature range from 0 K to 1500 K.
基金supported by the Major Projects of National Science and Technology(Grant No.2011ZX05040-005-002-001)the National Natural Science Foundation of China(Grant No.21276171 and 21276003)+1 种基金the National Younger Natural Science Foundation of China(Grant No.21103120)China Postdoctoral Science Foundation(Grant No.2012M520608)
文摘The formation mechanism of methane (CH4) during coal evolution has been investigated by density functional theory (DFT) of quantum chemistry. Thermogenic gas, which is generated during the thermal evolution of medium rank coal, is the main source of coalbed methane (CBM). Ethylbenzene (A) and 6,7-dimethyl-5,6,7,8-tetrahydro-1-hydroxynaphthalene (B) have been used as model compounds to study the pyrolysis mechanism of highly volatile bituminous coal (R), according to the similarity of bond orders and bond lengths. All possible paths are designed for each model. It can be concluded that the activation energies for H-assisted paths are lower than others in the process of methane formation; an H radical attacking on β-C to yield CH4 is the dominant path for the formation of CH4 from highly volatile bituminous coal. In addition, the calculated results also reveal that the positions on which H radical attacks and to which intramolecular H migrates have effects on methyl cleavage.
文摘A density functional theory (DFT) study has been conducted in this work to investigate the pyrolysis pathways of propane and n-butane, which are the main components of liquefied petroleum gas (LPG), for better understanding the pyrolysis behavior of LPG in hydrogen thermal plasma. Over 60 possible reactions are considered. The reaction enthalpies and activation energies of these reactions are calculated and analyzed with a Gaussian method of B3LYP and basic set of 6-31G (d,p). A most possible reaction pathway is brought up. According to this reaction pathway, the main products of LPG pyrolysis are acetylene, ethylene, methane, ethane and extra hydrogen. Acetylene mainly comes from the pyrolysis of propylene and ethylene, and hydrogen abstraction reactions are the main source of extra hydrogen gas. Active H. radicals are found to play a very important role in many reactions, and they can remarkably lower the energies needed for reactions.