Low-field nuclear magnetic resonance(NMR)has broad application prospects in the explo-ration and development of unconventional oil and gas reservoirs.However,NMR instruments tend to acquire echo signals with relativel...Low-field nuclear magnetic resonance(NMR)has broad application prospects in the explo-ration and development of unconventional oil and gas reservoirs.However,NMR instruments tend to acquire echo signals with relatively low signal-to-noise ratio(SNR),resulting in poor accuracy of T2 spectrum inversion.It is crucial to preprocess the low SNR data with denoising methods before inversion.In this paper,a hybrid NMR data denoising method combining empirical mode decomposition-singular value decomposition(EMD-SVD)was proposed.Firstly,the echo data were decomposed with the EMD method to low-and high-frequency intrinsic mode function(IMF)components as well as a residual.Next,the SVD method was employed for the high-frequency IMF components denoising.Finally,the low-frequency IMF components,the denoised high-frequency IMF components,and the residual are summed to form the denoised signal.To validate the effectiveness and feasibility of the EMD-SVDmethod,numerical simulations,experimental data,and NMR log data processingwere conducted.The results indicate that the inverted NMR spectra with the EMD-SVD denoising method exhibit higher quality compared to the EMD method and the SVD method.展开更多
The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n...The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.展开更多
The noises of remote sensing images, caused by imaging system and ground environment, negatively affect the accuracy and efficiency in extracting forest information from remote sensing images. The denoising is critica...The noises of remote sensing images, caused by imaging system and ground environment, negatively affect the accuracy and efficiency in extracting forest information from remote sensing images. The denoising is critical for image classifications for forest areas. The objective of this research is to assess the effectiveness of currently used spatial filtering methods for extracting with forest information related from Landsat 5 TM images. Five spatial filtering methods including low-pass filter, median filter, mean filter, sigma filter and enhanced self-adaptive filter were examined. A set of evaluation indices was designed to assess the ability of each denoising method for flatness, edge/boundary retention and enhancement. Based on the designed evaluation indices and visual assessment, it was found that sigma filter (D=1) and enhanced self-adaptive filter were the most effective denoising methods in classifying TM images for forest areas.展开更多
The field seismic data is disturbed by the interferential information, which has low signal to noise ratio (SNR). That is disadvantage for seismic data interpretation. So it is important to remove the noise of seismic...The field seismic data is disturbed by the interferential information, which has low signal to noise ratio (SNR). That is disadvantage for seismic data interpretation. So it is important to remove the noise of seismic data. Independent component analysis (ICA) can remove most of the noise interference. However, ICA has some defects in noise reduction, because it needs some conditions that seismic data is independent reciprocally for denoising. To solve these defects, this paper proposes an improved ICA algorithm to noise reduction. Through simulation experiments, it can be obtained that the best decomposition levels of the new algorithm is 3. At last, the proposed improved ICA is applied to deal with the actual seismic data. The results show that it can effectively eliminate most of seismic noise such as random noise, linear interference, surface waves, and so on. The improved ICA is not only easy to denoising, but also has excellent mathematical theoretical properties.展开更多
Unmanned surface vehicle(USV)is currently a hot research topic in maritime communication network(MCN),where denoising and semantic segmentation of maritime images taken by USV have been rarely studied.The former has r...Unmanned surface vehicle(USV)is currently a hot research topic in maritime communication network(MCN),where denoising and semantic segmentation of maritime images taken by USV have been rarely studied.The former has recently researched on autoencoder model used for image denoising,but the existed models are too complicated to be suitable for real-time detection of USV.In this paper,we proposed a lightweight autoencoder combined with inception module for maritime image denoising in different noisy environments and explore the effect of different inception modules on the denoising performance.Furthermore,we completed the semantic segmentation task for maritime images taken by USV utilizing the pretrained U-Net model with tuning,and compared them with original U-Net model based on different backbone.Subsequently,we compared the semantic segmentation of noised and denoised maritime images respectively to explore the effect of image noise on semantic segmentation performance.Case studies are provided to prove the feasibility of our proposed denoising and segmentation method.Finally,a simple integrated communication system combining image denoising and segmentation for USV is shown.展开更多
In this article, the authors consider equation ut = div(φ(Γu)A(|Du|^2)Du) - (u- I), where φ is strictly positive and F is a known vector-valued mapping, A : R+ → R^+ is decreasing and A(s) -1/ √s a...In this article, the authors consider equation ut = div(φ(Γu)A(|Du|^2)Du) - (u- I), where φ is strictly positive and F is a known vector-valued mapping, A : R+ → R^+ is decreasing and A(s) -1/ √s as s → +∞. This kind of equation arises naturally from image denoising. For an initial datum I ∈ BVloc ∩ L^∞, the existence of BV solutions to the initial value problem of the equation is obtained.展开更多
In order to preferably identify infrared image of refuge chamber, reduce image noises of refuge chamber and retain more image details, we propose the method of combining two-dimensional discrete wavelet transform and ...In order to preferably identify infrared image of refuge chamber, reduce image noises of refuge chamber and retain more image details, we propose the method of combining two-dimensional discrete wavelet transform and bilateral denoising. First, the wavelet transform is adopted to decompose the image of refuge chamber, of which low frequency component remains unchanged. Then, three high-frequency components are treated by bilateral filtering, and the image is reconstructed. The result shows that the combination of bilateral filtering and wavelet transform for image denoising can better retain the details which are included in the image, while providing better visual effect. This is superior to using either bilateral filtering or wavelet transform alone. It is useful for perfecting emergency refuge system of coal mines.展开更多
Offline Urdu Nastaleeq text recognition has long been a serious problem due to its very cursive nature. In order to get rid of the character segmentation problems, many researchers are shifting focus towards segmentat...Offline Urdu Nastaleeq text recognition has long been a serious problem due to its very cursive nature. In order to get rid of the character segmentation problems, many researchers are shifting focus towards segmentation free ligature based recognition approaches. Majority of the prevalent ligature based recognition systems heavily rely on hand-engineered feature extraction techniques. However, such techniques are more error prone and may often lead to a loss of useful information that might hardly be captured later by any manual features. Most of the prevalent Urdu Nastaleeq test recognition was trained and tested on small sets. This paper proposes the use of stacked denoising autoencoder for automatic feature extraction directly from raw pixel values of ligature images. Such deep learning networks have not been applied for the recognition of Urdu text thus far. Different stacked denoising autoencoders have been trained on 178573 ligatures with 3732 classes from un-degraded(noise free) UPTI(Urdu Printed Text Image) data set. Subsequently, trained networks are validated and tested on degraded versions of UPTI data set. The experimental results demonstrate accuracies in range of 93% to 96% which are better than the existing Urdu OCR systems for such large dataset of ligatures.展开更多
The widespread use of computed tomography(CT)in clinical practice has made the public focus on the cumulative radiation dose delivered to patients.Low-dose CT(LDCT)reduces the X-ray radiation dose,yet compromises qual...The widespread use of computed tomography(CT)in clinical practice has made the public focus on the cumulative radiation dose delivered to patients.Low-dose CT(LDCT)reduces the X-ray radiation dose,yet compromises quality and decreases diagnostic performance.Researchers have made great efforts to develop various algorithms for LDCT and introduced deep-learning techniques,which have achieved impressive results.However,most of these methods are directly performed on reconstructed LDCT images,in which some subtle structures and details are readily lost during the reconstruction procedure,and convolutional neural network(CNN)-based methods for raw LDCT projection data are rarely reported.To address this problem,we adopted an attention residual dense CNN,referred to as AttRDN,for LDCT sinogram denoising.First,it was aided by the attention mechanism,in which the advantages of both feature fusion and global residual learning were used to extract noise from the contaminated LDCT sinograms.Then,the denoised sinogram was restored by subtracting the noise obtained from the input noisy sinogram.Finally,the CT image was reconstructed using filtered back-projection.The experimental results qualitatively and quantitatively demonstrate that the proposed AttRDN can achieve a better performance than state-of-the-art methods.Importantly,it can prevent the loss of detailed information and has the potential for clinical application.展开更多
Based on low illumination and a large number of mixed noises contained in coal mine, denoising with one method usually cannot achieve good results, so a multi-level image denoising method based on wavelet correlation ...Based on low illumination and a large number of mixed noises contained in coal mine, denoising with one method usually cannot achieve good results, so a multi-level image denoising method based on wavelet correlation relevant inter-scale is presented. Firstly, we used directional median filter to effectively reduce impulse noise in the spatial domain, which is the main cause of noise in mine. Secondly, we used a Wiener filtration method to mainly reduce the Gaussian noise, and then finally used a multi-wavelet transform to minimize the remaining noise of low-light images in the transform domain. This multi-level image noise reduction method combines spatial and transform domain denoising to enhance benefits, and effectively reduce impulse noise and Gaussian noise in a coal mine, while retaining good detailed image characteristics of the underground for improving quality of images with mixing noise and effective low-light environment.展开更多
We study the effects of quantization and additive white Gaussian noise(AWGN) in transmitting latent representations of images over a noisy communication channel. The latent representations are obtained using autoencod...We study the effects of quantization and additive white Gaussian noise(AWGN) in transmitting latent representations of images over a noisy communication channel. The latent representations are obtained using autoencoders(AEs). We analyze image reconstruction and classification performance for different channel noise powers, latent vector sizes, and number of quantization bits used for the latent variables as well as AEs’ parameters. The results show that the digital transmission of latent representations using conventional AEs alone is extremely vulnerable to channel noise and quantization effects. We then propose a combination of basic AE and a denoising autoencoder(DAE) to denoise the corrupted latent vectors at the receiver. This approach demonstrates robustness against channel noise and quantization effects and enables a significant improvement in image reconstruction and classification performance particularly in adverse scenarios with high noise powers and significant quantization effects.展开更多
In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals a...In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the indepen- dent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor.展开更多
In order to improve the adaptiveness of TV/L2-based image denoising algorithm in differ- ent signal-to-noise ratio (SNR) environments, an iterative denoising method with automatic parame- ter selection is proposed. ...In order to improve the adaptiveness of TV/L2-based image denoising algorithm in differ- ent signal-to-noise ratio (SNR) environments, an iterative denoising method with automatic parame- ter selection is proposed. Based upon the close connection between optimization function of denois- ing problem and regularization parameter, an updating model is built to select the regularized param- eter. Both the parameter and the objective function are dynamically updated in alternating minimiza- tion iterations, consequently, it can make the algorithm work in different SNR environments. Mean- while, a strategy for choosing the initial regularization parameter is presented. Considering Morozov discrepancy principle, a convex function with respect to the regularization parameter is modeled. Via the optimization method, it is easy and fast to find the convergence value of parameter, which is suitable for the iterative image denoising algorithm. Comparing with several state-of-the-art algo- rithms, many experiments confirm that the denoising algorithm with the proposed parameter selec- tion is highly effective to evaluate peak signal-to-noise ratio (PSNR) and structural similarity展开更多
In general conditions, most blind source separation algorithms are established on noisy-free model and ignore the noise that affects the quality of separated sources. Firstly, this paper introduces an improved natural...In general conditions, most blind source separation algorithms are established on noisy-free model and ignore the noise that affects the quality of separated sources. Firstly, this paper introduces an improved natural gradient algorithm based on bias removal technology to estimate the demixing matrix under noisy environment. Then the discrete wavelet transform technology is applied to the separated signals to further remove noise. In order to improve the separation effect, this paper analyzes the deficiency of hard threshold and soft threshold, and proposes a new wavelet threshold function based on the wavelet decomposition and reconfiguration. The simulations have verified that this method improves the signal noise ratio (SNR) of the separation results and the separation precision.展开更多
This paper proposes a novel exemplar- based method for reducing noise in computed tomography (CT) images. In the proposed method, denoising is performed on each block with the help of a given database of standard im...This paper proposes a novel exemplar- based method for reducing noise in computed tomography (CT) images. In the proposed method, denoising is performed on each block with the help of a given database of standard image blocks. For each noisy block, its denoised version is the best sparse positive linear combination of the blocks in the database. We formulate the problem as a constrained optimization problem such that the solution is the denoised block. Experimental results demonstrate the good performance of the proposed method over current state-of-the-art denoising methods, in terms of both objective and subjective evaluations.展开更多
When neutron yield is very low, reconstruction of coding penumbra image is rather difficult. In this paper, low-yield (109) 14 MeV neutron penumbra imaging was simulated by Monte Carlo method. The Richardson Lucy (...When neutron yield is very low, reconstruction of coding penumbra image is rather difficult. In this paper, low-yield (109) 14 MeV neutron penumbra imaging was simulated by Monte Carlo method. The Richardson Lucy (R-L) iteration method was proposed to incorporated with Bayesian least square-Gaussian scale mixture model (BLS-GSM) wavelet denoising for the simulated image. Optimal number of R-L iterations was gotten by a large number of tests. The results show that compared with Wiener method and median filter denoising, this method is better in restraining background noise, the correlation coefficient Rsr between the reconstructed and the real images is larger, and the reconstruction result is better.展开更多
Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management depar...Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management department,it can make effective use of road resources.For individuals,it can help people plan their own travel paths,avoid congestion,and save time.Owing to complex factors on the road,such as damage to the detector and disturbances from environment,the measured traffic volume can contain noise.Reducing the influence of noise on traffic flow prediction is a piece of very important work.Therefore,in this paper we propose a combination algorithm of denoising and BILSTM to effectively improve the performance of traffic flow prediction.At the same time,three denoising algorithms are compared to find the best combination mode.In this paper,the wavelet(WL) denoising scheme,the empirical mode decomposition(EMD) denoising scheme,and the ensemble empirical mode decomposition(EEMD) denoising scheme are all introduced to suppress outliers in traffic flow data.In addition,we combine the denoising schemes with bidirectional long short-term memory(BILSTM)network to predict the traffic flow.The data in this paper are cited from performance measurement system(PeMS).We choose three kinds of road data(mainline,off ramp,on ramp) to predict traffic flow.The results for mainline show that data denoising can improve prediction accuracy.Moreover,prediction accuracy of BILSTM+EEMD scheme is the highest in the three methods(BILSTM+WL,BILSTM+EMD,BILSTM+EEMD).The results for off ramp and on ramp show the same performance as the results for mainline.It is indicated that this model is suitable for different road sections and long-term prediction.展开更多
In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and trans...In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and transformer models for global feature capture.The performance of Hformer was verified and evaluated based on the AAPM-Mayo Clinic LDCT Grand Challenge Dataset.Compared with the former representative state-of-the-art(SOTA)model designs under different architectures,Hformer achieved optimal metrics without requiring a large number of learning parameters,with metrics of33.4405 PSNR,8.6956 RMSE,and 0.9163 SSIM.The experiments demonstrated designed Hformer is a SOTA model for noise suppression,structure preservation,and lesion detection.展开更多
We present a hybrid singular spectrum analysis (SSA) and fuzzy entropy method to filter noisy nonlinear time series. With this approach, SSA decomposes the noisy time series into its constituent components including...We present a hybrid singular spectrum analysis (SSA) and fuzzy entropy method to filter noisy nonlinear time series. With this approach, SSA decomposes the noisy time series into its constituent components including both the deterministic behavior and noise, while fuzzy entropy automatically differentiates the optimal dominant components from the noise based on the complexity of each component. We demonstrate the effectiveness of the hybrid approach in reconstructing the Lorenz and Mackey--Class attractors, as well as improving the multi-step prediction quality of these two series in noisy environments.展开更多
Enhancing seismic resolution is a key component in seismic data processing, which plays a valuable role in raising the prospecting accuracy of oil reservoirs. However, in noisy situations, existing resolution enhancem...Enhancing seismic resolution is a key component in seismic data processing, which plays a valuable role in raising the prospecting accuracy of oil reservoirs. However, in noisy situations, existing resolution enhancement methods are difficult to yield satisfactory processing outcomes for reservoir characterization. To solve this problem, we develop a new approach for simultaneous denoising and resolution enhancement of seismic data based on convolution dictionary learning. First, an elastic convolution dictionary learning algorithm is presented to efficiently learn a convolution dictionary with stronger representation capability from the noisy data to be processed. Specifically, the algorithm introduces the elastic L1/2 norm as a sparsity constraint and employs a steepest gradient descent strategy to efficiently solve the frequency-domain linear system with substantial computational cost in a half-quadratic splitting framework. Then, based on the learned convolution dictionary, a weighted convolutional sparse representation paradigm is designed to encode the noisy data to acquire an optimal sparse approximation of the effective signal. Subsequently, a high-resolution dictionary with a broadband spectrum is constructed by the proposed parameter scaling strategy and matched filtering technique on the basis of atomic spectrum modeling. Finally, the optimal sparse approximation of the effective signal and the constructed high-resolution dictionary are used for data reconstruction to obtain the seismic signal with high resolution and high signal-to-noise ratio. Synthetic and field dataset examples are executed to check the effectiveness and reliability of the developed method. The results indicate that this method has a more competitive performance in seismic applications compared with the conventional deconvolution and spectral whitening methods.展开更多
基金supported by the National Natural Science Foundation of China(grant no.42304118)the Young Elite Scientist Sponsorship Program by BAST(grant no.BYESS2023027)the Science Foundation of China University of Petroleum,Beijing(grant no.2462022QNXZ001).
文摘Low-field nuclear magnetic resonance(NMR)has broad application prospects in the explo-ration and development of unconventional oil and gas reservoirs.However,NMR instruments tend to acquire echo signals with relatively low signal-to-noise ratio(SNR),resulting in poor accuracy of T2 spectrum inversion.It is crucial to preprocess the low SNR data with denoising methods before inversion.In this paper,a hybrid NMR data denoising method combining empirical mode decomposition-singular value decomposition(EMD-SVD)was proposed.Firstly,the echo data were decomposed with the EMD method to low-and high-frequency intrinsic mode function(IMF)components as well as a residual.Next,the SVD method was employed for the high-frequency IMF components denoising.Finally,the low-frequency IMF components,the denoised high-frequency IMF components,and the residual are summed to form the denoised signal.To validate the effectiveness and feasibility of the EMD-SVDmethod,numerical simulations,experimental data,and NMR log data processingwere conducted.The results indicate that the inverted NMR spectra with the EMD-SVD denoising method exhibit higher quality compared to the EMD method and the SVD method.
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation 2022M720419 to provide fund for conducting experiments。
文摘The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.
文摘The noises of remote sensing images, caused by imaging system and ground environment, negatively affect the accuracy and efficiency in extracting forest information from remote sensing images. The denoising is critical for image classifications for forest areas. The objective of this research is to assess the effectiveness of currently used spatial filtering methods for extracting with forest information related from Landsat 5 TM images. Five spatial filtering methods including low-pass filter, median filter, mean filter, sigma filter and enhanced self-adaptive filter were examined. A set of evaluation indices was designed to assess the ability of each denoising method for flatness, edge/boundary retention and enhancement. Based on the designed evaluation indices and visual assessment, it was found that sigma filter (D=1) and enhanced self-adaptive filter were the most effective denoising methods in classifying TM images for forest areas.
基金Funded by the Project of China Geological Survey (No.1212010916040)the Sichuan Science and Technology Program (No.2017JY0051)the Sichuan Science and Technology Program (No.2018GZ0200)
文摘The field seismic data is disturbed by the interferential information, which has low signal to noise ratio (SNR). That is disadvantage for seismic data interpretation. So it is important to remove the noise of seismic data. Independent component analysis (ICA) can remove most of the noise interference. However, ICA has some defects in noise reduction, because it needs some conditions that seismic data is independent reciprocally for denoising. To solve these defects, this paper proposes an improved ICA algorithm to noise reduction. Through simulation experiments, it can be obtained that the best decomposition levels of the new algorithm is 3. At last, the proposed improved ICA is applied to deal with the actual seismic data. The results show that it can effectively eliminate most of seismic noise such as random noise, linear interference, surface waves, and so on. The improved ICA is not only easy to denoising, but also has excellent mathematical theoretical properties.
基金Natural Science Foundation of Fujian Province(No.2019J05026)in part by the Education Scientific Research Project for Young Teachers of Fujian Province(No.JT180053).
文摘Unmanned surface vehicle(USV)is currently a hot research topic in maritime communication network(MCN),where denoising and semantic segmentation of maritime images taken by USV have been rarely studied.The former has recently researched on autoencoder model used for image denoising,but the existed models are too complicated to be suitable for real-time detection of USV.In this paper,we proposed a lightweight autoencoder combined with inception module for maritime image denoising in different noisy environments and explore the effect of different inception modules on the denoising performance.Furthermore,we completed the semantic segmentation task for maritime images taken by USV utilizing the pretrained U-Net model with tuning,and compared them with original U-Net model based on different backbone.Subsequently,we compared the semantic segmentation of noised and denoised maritime images respectively to explore the effect of image noise on semantic segmentation performance.Case studies are provided to prove the feasibility of our proposed denoising and segmentation method.Finally,a simple integrated communication system combining image denoising and segmentation for USV is shown.
基金This research is partially supported by NSAF of China (10576013)by NSFC of China (10531040)
文摘In this article, the authors consider equation ut = div(φ(Γu)A(|Du|^2)Du) - (u- I), where φ is strictly positive and F is a known vector-valued mapping, A : R+ → R^+ is decreasing and A(s) -1/ √s as s → +∞. This kind of equation arises naturally from image denoising. For an initial datum I ∈ BVloc ∩ L^∞, the existence of BV solutions to the initial value problem of the equation is obtained.
基金the Scientific Research Project of Zhejiang Education Department of China (No. Y20108569)the Soft Science Project of Ningbo of China (No. 2011A1058)the Soft Science of Zhejiang Association for Science and Technology of China (No. KX12E-10)
文摘In order to preferably identify infrared image of refuge chamber, reduce image noises of refuge chamber and retain more image details, we propose the method of combining two-dimensional discrete wavelet transform and bilateral denoising. First, the wavelet transform is adopted to decompose the image of refuge chamber, of which low frequency component remains unchanged. Then, three high-frequency components are treated by bilateral filtering, and the image is reconstructed. The result shows that the combination of bilateral filtering and wavelet transform for image denoising can better retain the details which are included in the image, while providing better visual effect. This is superior to using either bilateral filtering or wavelet transform alone. It is useful for perfecting emergency refuge system of coal mines.
基金National Natural Science Foundation of China (Project No. 61273365)111 Project (No. B08004) are gratefully acknowledged
文摘Offline Urdu Nastaleeq text recognition has long been a serious problem due to its very cursive nature. In order to get rid of the character segmentation problems, many researchers are shifting focus towards segmentation free ligature based recognition approaches. Majority of the prevalent ligature based recognition systems heavily rely on hand-engineered feature extraction techniques. However, such techniques are more error prone and may often lead to a loss of useful information that might hardly be captured later by any manual features. Most of the prevalent Urdu Nastaleeq test recognition was trained and tested on small sets. This paper proposes the use of stacked denoising autoencoder for automatic feature extraction directly from raw pixel values of ligature images. Such deep learning networks have not been applied for the recognition of Urdu text thus far. Different stacked denoising autoencoders have been trained on 178573 ligatures with 3732 classes from un-degraded(noise free) UPTI(Urdu Printed Text Image) data set. Subsequently, trained networks are validated and tested on degraded versions of UPTI data set. The experimental results demonstrate accuracies in range of 93% to 96% which are better than the existing Urdu OCR systems for such large dataset of ligatures.
基金This work was supported in part by the National Key R&D Program of China(Nos.2016YFC0104609 and 2019YFC0605203)The Fundamental Research Funds for the Central Universities(Nos.2019CDYGYB019 and 2020CDJ-LHZZ-075)。
文摘The widespread use of computed tomography(CT)in clinical practice has made the public focus on the cumulative radiation dose delivered to patients.Low-dose CT(LDCT)reduces the X-ray radiation dose,yet compromises quality and decreases diagnostic performance.Researchers have made great efforts to develop various algorithms for LDCT and introduced deep-learning techniques,which have achieved impressive results.However,most of these methods are directly performed on reconstructed LDCT images,in which some subtle structures and details are readily lost during the reconstruction procedure,and convolutional neural network(CNN)-based methods for raw LDCT projection data are rarely reported.To address this problem,we adopted an attention residual dense CNN,referred to as AttRDN,for LDCT sinogram denoising.First,it was aided by the attention mechanism,in which the advantages of both feature fusion and global residual learning were used to extract noise from the contaminated LDCT sinograms.Then,the denoised sinogram was restored by subtracting the noise obtained from the input noisy sinogram.Finally,the CT image was reconstructed using filtered back-projection.The experimental results qualitatively and quantitatively demonstrate that the proposed AttRDN can achieve a better performance than state-of-the-art methods.Importantly,it can prevent the loss of detailed information and has the potential for clinical application.
基金provided by the Heilongjiang Provincial Department of Education Planning Project (No.GBC1212076)the Central University Research Project (No.00-800015Q7)
文摘Based on low illumination and a large number of mixed noises contained in coal mine, denoising with one method usually cannot achieve good results, so a multi-level image denoising method based on wavelet correlation relevant inter-scale is presented. Firstly, we used directional median filter to effectively reduce impulse noise in the spatial domain, which is the main cause of noise in mine. Secondly, we used a Wiener filtration method to mainly reduce the Gaussian noise, and then finally used a multi-wavelet transform to minimize the remaining noise of low-light images in the transform domain. This multi-level image noise reduction method combines spatial and transform domain denoising to enhance benefits, and effectively reduce impulse noise and Gaussian noise in a coal mine, while retaining good detailed image characteristics of the underground for improving quality of images with mixing noise and effective low-light environment.
基金supported by Hong Kong Government general research fund (GRF) under project number PolyU152757/16ENational Natural Science Foundation China under project numbers 61435006 and 61401020
文摘We study the effects of quantization and additive white Gaussian noise(AWGN) in transmitting latent representations of images over a noisy communication channel. The latent representations are obtained using autoencoders(AEs). We analyze image reconstruction and classification performance for different channel noise powers, latent vector sizes, and number of quantization bits used for the latent variables as well as AEs’ parameters. The results show that the digital transmission of latent representations using conventional AEs alone is extremely vulnerable to channel noise and quantization effects. We then propose a combination of basic AE and a denoising autoencoder(DAE) to denoise the corrupted latent vectors at the receiver. This approach demonstrates robustness against channel noise and quantization effects and enables a significant improvement in image reconstruction and classification performance particularly in adverse scenarios with high noise powers and significant quantization effects.
基金supported by the National Science and Technology,China(Grant No.2012BAJ15B04)the National Natural Science Foundation of China(Grant Nos.41071270 and 61473213)+3 种基金the Natural Science Foundation of Hubei Province,China(Grant No.2015CFB424)the State Key Laboratory Foundation of Satellite Ocean Environment Dynamics,China(Grant No.SOED1405)the Hubei Provincial Key Laboratory Foundation of Metallurgical Industry Process System Science,China(Grant No.Z201303)the Hubei Key Laboratory Foundation of Transportation Internet of Things,Wuhan University of Technology,China(Grant No.2015III015-B02)
文摘In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the indepen- dent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor.
基金Supported by the National High Technology Research and Development Program of China(863Program)(2012AA8012011C)
文摘In order to improve the adaptiveness of TV/L2-based image denoising algorithm in differ- ent signal-to-noise ratio (SNR) environments, an iterative denoising method with automatic parame- ter selection is proposed. Based upon the close connection between optimization function of denois- ing problem and regularization parameter, an updating model is built to select the regularized param- eter. Both the parameter and the objective function are dynamically updated in alternating minimiza- tion iterations, consequently, it can make the algorithm work in different SNR environments. Mean- while, a strategy for choosing the initial regularization parameter is presented. Considering Morozov discrepancy principle, a convex function with respect to the regularization parameter is modeled. Via the optimization method, it is easy and fast to find the convergence value of parameter, which is suitable for the iterative image denoising algorithm. Comparing with several state-of-the-art algo- rithms, many experiments confirm that the denoising algorithm with the proposed parameter selec- tion is highly effective to evaluate peak signal-to-noise ratio (PSNR) and structural similarity
基金supported by the Key Item of Science and Technology Program of Xiangtan City,Hunan Province,China under Grant No. ZJ20071008
文摘In general conditions, most blind source separation algorithms are established on noisy-free model and ignore the noise that affects the quality of separated sources. Firstly, this paper introduces an improved natural gradient algorithm based on bias removal technology to estimate the demixing matrix under noisy environment. Then the discrete wavelet transform technology is applied to the separated signals to further remove noise. In order to improve the separation effect, this paper analyzes the deficiency of hard threshold and soft threshold, and proposes a new wavelet threshold function based on the wavelet decomposition and reconfiguration. The simulations have verified that this method improves the signal noise ratio (SNR) of the separation results and the separation precision.
文摘This paper proposes a novel exemplar- based method for reducing noise in computed tomography (CT) images. In the proposed method, denoising is performed on each block with the help of a given database of standard image blocks. For each noisy block, its denoised version is the best sparse positive linear combination of the blocks in the database. We formulate the problem as a constrained optimization problem such that the solution is the denoised block. Experimental results demonstrate the good performance of the proposed method over current state-of-the-art denoising methods, in terms of both objective and subjective evaluations.
基金supported by National Natural Science Foundation of China(No.11105106)
文摘When neutron yield is very low, reconstruction of coding penumbra image is rather difficult. In this paper, low-yield (109) 14 MeV neutron penumbra imaging was simulated by Monte Carlo method. The Richardson Lucy (R-L) iteration method was proposed to incorporated with Bayesian least square-Gaussian scale mixture model (BLS-GSM) wavelet denoising for the simulated image. Optimal number of R-L iterations was gotten by a large number of tests. The results show that compared with Wiener method and median filter denoising, this method is better in restraining background noise, the correlation coefficient Rsr between the reconstructed and the real images is larger, and the reconstruction result is better.
基金Project supported by the Program of Humanities and Social Science of the Education Ministry of China(Grant No.20YJA630008)the Natural Science Foundation of Zhejiang Province,China(Grant No.LY20G010004)the K C Wong Magna Fund in Ningbo University,China。
文摘Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management department,it can make effective use of road resources.For individuals,it can help people plan their own travel paths,avoid congestion,and save time.Owing to complex factors on the road,such as damage to the detector and disturbances from environment,the measured traffic volume can contain noise.Reducing the influence of noise on traffic flow prediction is a piece of very important work.Therefore,in this paper we propose a combination algorithm of denoising and BILSTM to effectively improve the performance of traffic flow prediction.At the same time,three denoising algorithms are compared to find the best combination mode.In this paper,the wavelet(WL) denoising scheme,the empirical mode decomposition(EMD) denoising scheme,and the ensemble empirical mode decomposition(EEMD) denoising scheme are all introduced to suppress outliers in traffic flow data.In addition,we combine the denoising schemes with bidirectional long short-term memory(BILSTM)network to predict the traffic flow.The data in this paper are cited from performance measurement system(PeMS).We choose three kinds of road data(mainline,off ramp,on ramp) to predict traffic flow.The results for mainline show that data denoising can improve prediction accuracy.Moreover,prediction accuracy of BILSTM+EEMD scheme is the highest in the three methods(BILSTM+WL,BILSTM+EMD,BILSTM+EEMD).The results for off ramp and on ramp show the same performance as the results for mainline.It is indicated that this model is suitable for different road sections and long-term prediction.
基金supported by the National Natural Science Foundation of China(Nos.11975292,12222512)the CAS"Light of West Chin"Program+1 种基金the CAS Pioneer Hundred Talent Programthe Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)。
文摘In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and transformer models for global feature capture.The performance of Hformer was verified and evaluated based on the AAPM-Mayo Clinic LDCT Grand Challenge Dataset.Compared with the former representative state-of-the-art(SOTA)model designs under different architectures,Hformer achieved optimal metrics without requiring a large number of learning parameters,with metrics of33.4405 PSNR,8.6956 RMSE,and 0.9163 SSIM.The experiments demonstrated designed Hformer is a SOTA model for noise suppression,structure preservation,and lesion detection.
文摘We present a hybrid singular spectrum analysis (SSA) and fuzzy entropy method to filter noisy nonlinear time series. With this approach, SSA decomposes the noisy time series into its constituent components including both the deterministic behavior and noise, while fuzzy entropy automatically differentiates the optimal dominant components from the noise based on the complexity of each component. We demonstrate the effectiveness of the hybrid approach in reconstructing the Lorenz and Mackey--Class attractors, as well as improving the multi-step prediction quality of these two series in noisy environments.
基金This work is supported by the Laoshan National Laboratoryof ScienceandTechnologyFoundation(No.LSKj202203400)the National Natural Science Foundation of China(No.41874146).
文摘Enhancing seismic resolution is a key component in seismic data processing, which plays a valuable role in raising the prospecting accuracy of oil reservoirs. However, in noisy situations, existing resolution enhancement methods are difficult to yield satisfactory processing outcomes for reservoir characterization. To solve this problem, we develop a new approach for simultaneous denoising and resolution enhancement of seismic data based on convolution dictionary learning. First, an elastic convolution dictionary learning algorithm is presented to efficiently learn a convolution dictionary with stronger representation capability from the noisy data to be processed. Specifically, the algorithm introduces the elastic L1/2 norm as a sparsity constraint and employs a steepest gradient descent strategy to efficiently solve the frequency-domain linear system with substantial computational cost in a half-quadratic splitting framework. Then, based on the learned convolution dictionary, a weighted convolutional sparse representation paradigm is designed to encode the noisy data to acquire an optimal sparse approximation of the effective signal. Subsequently, a high-resolution dictionary with a broadband spectrum is constructed by the proposed parameter scaling strategy and matched filtering technique on the basis of atomic spectrum modeling. Finally, the optimal sparse approximation of the effective signal and the constructed high-resolution dictionary are used for data reconstruction to obtain the seismic signal with high resolution and high signal-to-noise ratio. Synthetic and field dataset examples are executed to check the effectiveness and reliability of the developed method. The results indicate that this method has a more competitive performance in seismic applications compared with the conventional deconvolution and spectral whitening methods.