期刊文献+
共找到3,016篇文章
< 1 2 151 >
每页显示 20 50 100
A hybrid denoising method for low-field nuclear magnetic resonance data
1
作者 Yongjie Zhao Ranhong Xie +2 位作者 Ke Huang Huan Su Jiangfeng Guo 《Magnetic Resonance Letters》 2025年第2期19-29,共11页
Low-field nuclear magnetic resonance(NMR)has broad application prospects in the explo-ration and development of unconventional oil and gas reservoirs.However,NMR instruments tend to acquire echo signals with relativel... Low-field nuclear magnetic resonance(NMR)has broad application prospects in the explo-ration and development of unconventional oil and gas reservoirs.However,NMR instruments tend to acquire echo signals with relatively low signal-to-noise ratio(SNR),resulting in poor accuracy of T2 spectrum inversion.It is crucial to preprocess the low SNR data with denoising methods before inversion.In this paper,a hybrid NMR data denoising method combining empirical mode decomposition-singular value decomposition(EMD-SVD)was proposed.Firstly,the echo data were decomposed with the EMD method to low-and high-frequency intrinsic mode function(IMF)components as well as a residual.Next,the SVD method was employed for the high-frequency IMF components denoising.Finally,the low-frequency IMF components,the denoised high-frequency IMF components,and the residual are summed to form the denoised signal.To validate the effectiveness and feasibility of the EMD-SVDmethod,numerical simulations,experimental data,and NMR log data processingwere conducted.The results indicate that the inverted NMR spectra with the EMD-SVD denoising method exhibit higher quality compared to the EMD method and the SVD method. 展开更多
关键词 Low-field nuclear magnetic resonance Data denoising Empirical mode decomposition Singular value decomposition
在线阅读 下载PDF
Automatic modulation recognition of radio fuzes using a DR2D-based adaptive denoising method and textural feature extraction 被引量:1
2
作者 Yangtian Liu Xiaopeng Yan +2 位作者 Qiang Liu Tai An Jian Dai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期328-338,共11页
The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n... The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs. 展开更多
关键词 Automatic modulation recognition Adaptive denoising Data rearrangement and the 2D FFT(DR2D) Radio fuze
在线阅读 下载PDF
A comparative study of the denoising methods of Thematic Mapper images for forest areas 被引量:1
3
作者 赵正勇 王立海 《Journal of Forestry Research》 SCIE CAS CSCD 2007年第2期123-127,共5页
The noises of remote sensing images, caused by imaging system and ground environment, negatively affect the accuracy and efficiency in extracting forest information from remote sensing images. The denoising is critica... The noises of remote sensing images, caused by imaging system and ground environment, negatively affect the accuracy and efficiency in extracting forest information from remote sensing images. The denoising is critical for image classifications for forest areas. The objective of this research is to assess the effectiveness of currently used spatial filtering methods for extracting with forest information related from Landsat 5 TM images. Five spatial filtering methods including low-pass filter, median filter, mean filter, sigma filter and enhanced self-adaptive filter were examined. A set of evaluation indices was designed to assess the ability of each denoising method for flatness, edge/boundary retention and enhancement. Based on the designed evaluation indices and visual assessment, it was found that sigma filter (D=1) and enhanced self-adaptive filter were the most effective denoising methods in classifying TM images for forest areas. 展开更多
关键词 denoising Edge/boundary retention Enhanced self-adaptive filter TM image
在线阅读 下载PDF
The improved ICA algorithm and its application in the seismic data denoising 被引量:6
4
作者 QIN Fei-long LIU Jian 《Journal of Chongqing University》 CAS 2018年第4期162-170,共9页
The field seismic data is disturbed by the interferential information, which has low signal to noise ratio (SNR). That is disadvantage for seismic data interpretation. So it is important to remove the noise of seismic... The field seismic data is disturbed by the interferential information, which has low signal to noise ratio (SNR). That is disadvantage for seismic data interpretation. So it is important to remove the noise of seismic data. Independent component analysis (ICA) can remove most of the noise interference. However, ICA has some defects in noise reduction, because it needs some conditions that seismic data is independent reciprocally for denoising. To solve these defects, this paper proposes an improved ICA algorithm to noise reduction. Through simulation experiments, it can be obtained that the best decomposition levels of the new algorithm is 3. At last, the proposed improved ICA is applied to deal with the actual seismic data. The results show that it can effectively eliminate most of seismic noise such as random noise, linear interference, surface waves, and so on. The improved ICA is not only easy to denoising, but also has excellent mathematical theoretical properties. 展开更多
关键词 SEISMIC data IMPROVED ICA WAVELET transform denoising
在线阅读 下载PDF
Improved Denoising Autoencoder for Maritime Image Denoising and Semantic Segmentation of USV 被引量:3
5
作者 Yuhang Qiu Yongcheng Yang +3 位作者 Zhijian Lin Pingping Chen Yang Luo Wenqi Huang 《China Communications》 SCIE CSCD 2020年第3期46-57,共12页
Unmanned surface vehicle(USV)is currently a hot research topic in maritime communication network(MCN),where denoising and semantic segmentation of maritime images taken by USV have been rarely studied.The former has r... Unmanned surface vehicle(USV)is currently a hot research topic in maritime communication network(MCN),where denoising and semantic segmentation of maritime images taken by USV have been rarely studied.The former has recently researched on autoencoder model used for image denoising,but the existed models are too complicated to be suitable for real-time detection of USV.In this paper,we proposed a lightweight autoencoder combined with inception module for maritime image denoising in different noisy environments and explore the effect of different inception modules on the denoising performance.Furthermore,we completed the semantic segmentation task for maritime images taken by USV utilizing the pretrained U-Net model with tuning,and compared them with original U-Net model based on different backbone.Subsequently,we compared the semantic segmentation of noised and denoised maritime images respectively to explore the effect of image noise on semantic segmentation performance.Case studies are provided to prove the feasibility of our proposed denoising and segmentation method.Finally,a simple integrated communication system combining image denoising and segmentation for USV is shown. 展开更多
关键词 USV denoising autoencoder SEMANTIC SEGMENTATION U-Net
在线阅读 下载PDF
BV SOLUTIONS TO A DEGENERATE PARABOLIC EQUATION FOR IMAGE DENOISING 被引量:2
6
作者 孔令海 郇中丹 郭柏灵 《Acta Mathematica Scientia》 SCIE CSCD 2007年第1期169-179,共11页
In this article, the authors consider equation ut = div(φ(Γu)A(|Du|^2)Du) - (u- I), where φ is strictly positive and F is a known vector-valued mapping, A : R+ → R^+ is decreasing and A(s) -1/ √s a... In this article, the authors consider equation ut = div(φ(Γu)A(|Du|^2)Du) - (u- I), where φ is strictly positive and F is a known vector-valued mapping, A : R+ → R^+ is decreasing and A(s) -1/ √s as s →  +∞. This kind of equation arises naturally from image denoising. For an initial datum I ∈ BVloc ∩ L^∞, the existence of BV solutions to the initial value problem of the equation is obtained. 展开更多
关键词 BVloc function BV∞ function strongly degenerate parabolic denoising
在线阅读 下载PDF
Image denoising algorithm of refuge chamber by combining wavelet transform and bilateral filtering 被引量:9
7
作者 Zhang Weipeng 《International Journal of Mining Science and Technology》 SCIE EI 2013年第2期228-232,共5页
In order to preferably identify infrared image of refuge chamber, reduce image noises of refuge chamber and retain more image details, we propose the method of combining two-dimensional discrete wavelet transform and ... In order to preferably identify infrared image of refuge chamber, reduce image noises of refuge chamber and retain more image details, we propose the method of combining two-dimensional discrete wavelet transform and bilateral denoising. First, the wavelet transform is adopted to decompose the image of refuge chamber, of which low frequency component remains unchanged. Then, three high-frequency components are treated by bilateral filtering, and the image is reconstructed. The result shows that the combination of bilateral filtering and wavelet transform for image denoising can better retain the details which are included in the image, while providing better visual effect. This is superior to using either bilateral filtering or wavelet transform alone. It is useful for perfecting emergency refuge system of coal mines. 展开更多
关键词 Refuge chamber Image denoising Bilateral filtering Wavelet transform
在线阅读 下载PDF
Offline Urdu Nastaleeq Optical Character Recognition Based on Stacked Denoising Autoencoder 被引量:2
8
作者 Ibrar Ahmad Xiaojie Wang +1 位作者 Ruifan Li Shahid Rasheed 《China Communications》 SCIE CSCD 2017年第1期146-157,共12页
Offline Urdu Nastaleeq text recognition has long been a serious problem due to its very cursive nature. In order to get rid of the character segmentation problems, many researchers are shifting focus towards segmentat... Offline Urdu Nastaleeq text recognition has long been a serious problem due to its very cursive nature. In order to get rid of the character segmentation problems, many researchers are shifting focus towards segmentation free ligature based recognition approaches. Majority of the prevalent ligature based recognition systems heavily rely on hand-engineered feature extraction techniques. However, such techniques are more error prone and may often lead to a loss of useful information that might hardly be captured later by any manual features. Most of the prevalent Urdu Nastaleeq test recognition was trained and tested on small sets. This paper proposes the use of stacked denoising autoencoder for automatic feature extraction directly from raw pixel values of ligature images. Such deep learning networks have not been applied for the recognition of Urdu text thus far. Different stacked denoising autoencoders have been trained on 178573 ligatures with 3732 classes from un-degraded(noise free) UPTI(Urdu Printed Text Image) data set. Subsequently, trained networks are validated and tested on degraded versions of UPTI data set. The experimental results demonstrate accuracies in range of 93% to 96% which are better than the existing Urdu OCR systems for such large dataset of ligatures. 展开更多
关键词 offline printed ligature recognition urdu nastaleeq denoising autoencoder deep learning classification
在线阅读 下载PDF
Sinogram denoising via attention residual dense convolutional neural network for low-dose computed tomography 被引量:8
9
作者 Yin-Jin Ma Yong Ren +3 位作者 Peng Feng Peng He Xiao-Dong Guo Biao Wei 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第4期70-83,共14页
The widespread use of computed tomography(CT)in clinical practice has made the public focus on the cumulative radiation dose delivered to patients.Low-dose CT(LDCT)reduces the X-ray radiation dose,yet compromises qual... The widespread use of computed tomography(CT)in clinical practice has made the public focus on the cumulative radiation dose delivered to patients.Low-dose CT(LDCT)reduces the X-ray radiation dose,yet compromises quality and decreases diagnostic performance.Researchers have made great efforts to develop various algorithms for LDCT and introduced deep-learning techniques,which have achieved impressive results.However,most of these methods are directly performed on reconstructed LDCT images,in which some subtle structures and details are readily lost during the reconstruction procedure,and convolutional neural network(CNN)-based methods for raw LDCT projection data are rarely reported.To address this problem,we adopted an attention residual dense CNN,referred to as AttRDN,for LDCT sinogram denoising.First,it was aided by the attention mechanism,in which the advantages of both feature fusion and global residual learning were used to extract noise from the contaminated LDCT sinograms.Then,the denoised sinogram was restored by subtracting the noise obtained from the input noisy sinogram.Finally,the CT image was reconstructed using filtered back-projection.The experimental results qualitatively and quantitatively demonstrate that the proposed AttRDN can achieve a better performance than state-of-the-art methods.Importantly,it can prevent the loss of detailed information and has the potential for clinical application. 展开更多
关键词 Low-dose CT Sinogram denoising Deep learning Attention mechanism
在线阅读 下载PDF
Multi-level denoising and enhancement method based on wavelet transform for mine monitoring 被引量:9
10
作者 Yanqin Zhao 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期163-166,共4页
Based on low illumination and a large number of mixed noises contained in coal mine, denoising with one method usually cannot achieve good results, so a multi-level image denoising method based on wavelet correlation ... Based on low illumination and a large number of mixed noises contained in coal mine, denoising with one method usually cannot achieve good results, so a multi-level image denoising method based on wavelet correlation relevant inter-scale is presented. Firstly, we used directional median filter to effectively reduce impulse noise in the spatial domain, which is the main cause of noise in mine. Secondly, we used a Wiener filtration method to mainly reduce the Gaussian noise, and then finally used a multi-wavelet transform to minimize the remaining noise of low-light images in the transform domain. This multi-level image noise reduction method combines spatial and transform domain denoising to enhance benefits, and effectively reduce impulse noise and Gaussian noise in a coal mine, while retaining good detailed image characteristics of the underground for improving quality of images with mixing noise and effective low-light environment. 展开更多
关键词 Median filter Wiener filter Wavelet transform Image denoising Image enhancement
在线阅读 下载PDF
Robust and Efficient Data Transmission over Noisy Communication Channels Using Stacked and Denoising Autoencoders 被引量:1
11
作者 Faisal Nadeem Khan Alan Pak Tao Lau 《China Communications》 SCIE CSCD 2019年第8期82-92,共11页
We study the effects of quantization and additive white Gaussian noise(AWGN) in transmitting latent representations of images over a noisy communication channel. The latent representations are obtained using autoencod... We study the effects of quantization and additive white Gaussian noise(AWGN) in transmitting latent representations of images over a noisy communication channel. The latent representations are obtained using autoencoders(AEs). We analyze image reconstruction and classification performance for different channel noise powers, latent vector sizes, and number of quantization bits used for the latent variables as well as AEs’ parameters. The results show that the digital transmission of latent representations using conventional AEs alone is extremely vulnerable to channel noise and quantization effects. We then propose a combination of basic AE and a denoising autoencoder(DAE) to denoise the corrupted latent vectors at the receiver. This approach demonstrates robustness against channel noise and quantization effects and enables a significant improvement in image reconstruction and classification performance particularly in adverse scenarios with high noise powers and significant quantization effects. 展开更多
关键词 COMMUNICATION CHANNELS data compression DEEP learning autoencoders denoising autoencoders
在线阅读 下载PDF
Denoising of chaotic signal using independent component analysis and empirical mode decomposition with circulate translating 被引量:1
12
作者 王文波 张晓东 +4 位作者 常毓禅 汪祥莉 王钊 陈希 郑雷 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期400-406,共7页
In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals a... In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the indepen- dent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor. 展开更多
关键词 independent component analysis empirical mode decomposition chaotic signal denoising
在线阅读 下载PDF
TV/L2-based image denoisingalgorithm with automaticparameter selection 被引量:1
13
作者 王保宪 唐林波 +2 位作者 赵保军 邓宸伟 杨静林 《Journal of Beijing Institute of Technology》 EI CAS 2014年第3期375-382,共8页
In order to improve the adaptiveness of TV/L2-based image denoising algorithm in differ- ent signal-to-noise ratio (SNR) environments, an iterative denoising method with automatic parame- ter selection is proposed. ... In order to improve the adaptiveness of TV/L2-based image denoising algorithm in differ- ent signal-to-noise ratio (SNR) environments, an iterative denoising method with automatic parame- ter selection is proposed. Based upon the close connection between optimization function of denois- ing problem and regularization parameter, an updating model is built to select the regularized param- eter. Both the parameter and the objective function are dynamically updated in alternating minimiza- tion iterations, consequently, it can make the algorithm work in different SNR environments. Mean- while, a strategy for choosing the initial regularization parameter is presented. Considering Morozov discrepancy principle, a convex function with respect to the regularization parameter is modeled. Via the optimization method, it is easy and fast to find the convergence value of parameter, which is suitable for the iterative image denoising algorithm. Comparing with several state-of-the-art algo- rithms, many experiments confirm that the denoising algorithm with the proposed parameter selec- tion is highly effective to evaluate peak signal-to-noise ratio (PSNR) and structural similarity 展开更多
关键词 image denoising parameter selection fast gradient-based method discrepancy princi-ple
在线阅读 下载PDF
New Wavelet Threshold Denoising Method in Noisy Blind Source Separation 被引量:1
14
作者 Xuan-Sen He Tian-Jiao Zhao 《Journal of Electronic Science and Technology》 CAS 2010年第4期356-361,共6页
In general conditions, most blind source separation algorithms are established on noisy-free model and ignore the noise that affects the quality of separated sources. Firstly, this paper introduces an improved natural... In general conditions, most blind source separation algorithms are established on noisy-free model and ignore the noise that affects the quality of separated sources. Firstly, this paper introduces an improved natural gradient algorithm based on bias removal technology to estimate the demixing matrix under noisy environment. Then the discrete wavelet transform technology is applied to the separated signals to further remove noise. In order to improve the separation effect, this paper analyzes the deficiency of hard threshold and soft threshold, and proposes a new wavelet threshold function based on the wavelet decomposition and reconfiguration. The simulations have verified that this method improves the signal noise ratio (SNR) of the separation results and the separation precision. 展开更多
关键词 Bias removal blind source separation gradient algorithm wavelet threshold denoising.
在线阅读 下载PDF
An Optimal Weight Method for CT Image Denoising 被引量:1
15
作者 Dinh Hoan Trinh Marie Luong +3 位作者 Jean-Marie Rocchisani Canh Duong Pham Huy Dien Pham Francoise Dibos 《Journal of Electronic Science and Technology》 CAS 2012年第2期124-129,共6页
This paper proposes a novel exemplar- based method for reducing noise in computed tomography (CT) images. In the proposed method, denoising is performed on each block with the help of a given database of standard im... This paper proposes a novel exemplar- based method for reducing noise in computed tomography (CT) images. In the proposed method, denoising is performed on each block with the help of a given database of standard image blocks. For each noisy block, its denoised version is the best sparse positive linear combination of the blocks in the database. We formulate the problem as a constrained optimization problem such that the solution is the denoised block. Experimental results demonstrate the good performance of the proposed method over current state-of-the-art denoising methods, in terms of both objective and subjective evaluations. 展开更多
关键词 Constrained quadratic programming computed tomography image exemplar-based denoising.
在线阅读 下载PDF
R-L Method and BLS-GSM Denoising for Penumbra Image Reconstruction 被引量:1
16
作者 张美 李阳 +3 位作者 盛亮 黎春花 魏福利 彭博东 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第12期1259-1262,共4页
When neutron yield is very low, reconstruction of coding penumbra image is rather difficult. In this paper, low-yield (109) 14 MeV neutron penumbra imaging was simulated by Monte Carlo method. The Richardson Lucy (... When neutron yield is very low, reconstruction of coding penumbra image is rather difficult. In this paper, low-yield (109) 14 MeV neutron penumbra imaging was simulated by Monte Carlo method. The Richardson Lucy (R-L) iteration method was proposed to incorporated with Bayesian least square-Gaussian scale mixture model (BLS-GSM) wavelet denoising for the simulated image. Optimal number of R-L iterations was gotten by a large number of tests. The results show that compared with Wiener method and median filter denoising, this method is better in restraining background noise, the correlation coefficient Rsr between the reconstructed and the real images is larger, and the reconstruction result is better. 展开更多
关键词 inertial confinement fusion neutron penumbra imaging BLS-GSM Wavelet denoising R-L iteration restoration
在线阅读 下载PDF
Traffic flow prediction based on BILSTM model and data denoising scheme 被引量:4
17
作者 Zhong-Yu Li Hong-Xia Ge Rong-Jun Cheng 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期191-200,共10页
Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management depar... Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management department,it can make effective use of road resources.For individuals,it can help people plan their own travel paths,avoid congestion,and save time.Owing to complex factors on the road,such as damage to the detector and disturbances from environment,the measured traffic volume can contain noise.Reducing the influence of noise on traffic flow prediction is a piece of very important work.Therefore,in this paper we propose a combination algorithm of denoising and BILSTM to effectively improve the performance of traffic flow prediction.At the same time,three denoising algorithms are compared to find the best combination mode.In this paper,the wavelet(WL) denoising scheme,the empirical mode decomposition(EMD) denoising scheme,and the ensemble empirical mode decomposition(EEMD) denoising scheme are all introduced to suppress outliers in traffic flow data.In addition,we combine the denoising schemes with bidirectional long short-term memory(BILSTM)network to predict the traffic flow.The data in this paper are cited from performance measurement system(PeMS).We choose three kinds of road data(mainline,off ramp,on ramp) to predict traffic flow.The results for mainline show that data denoising can improve prediction accuracy.Moreover,prediction accuracy of BILSTM+EEMD scheme is the highest in the three methods(BILSTM+WL,BILSTM+EMD,BILSTM+EEMD).The results for off ramp and on ramp show the same performance as the results for mainline.It is indicated that this model is suitable for different road sections and long-term prediction. 展开更多
关键词 traffic flow prediction bidirectional long short-term memory network data denoising
在线阅读 下载PDF
Hformer:highly efficient vision transformer for low-dose CT denoising 被引量:2
18
作者 Shi-Yu Zhang Zhao-Xuan Wang +5 位作者 Hai-Bo Yang Yi-Lun Chen Yang Li Quan Pan Hong-Kai Wang Cheng-Xin Zhao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第4期161-174,共14页
In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and trans... In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and transformer models for global feature capture.The performance of Hformer was verified and evaluated based on the AAPM-Mayo Clinic LDCT Grand Challenge Dataset.Compared with the former representative state-of-the-art(SOTA)model designs under different architectures,Hformer achieved optimal metrics without requiring a large number of learning parameters,with metrics of33.4405 PSNR,8.6956 RMSE,and 0.9163 SSIM.The experiments demonstrated designed Hformer is a SOTA model for noise suppression,structure preservation,and lesion detection. 展开更多
关键词 Low-dose CT Deep learning Medical image Image denoising Convolutional neural networks Selfattention Residual network Auto-encoder
在线阅读 下载PDF
Denoising Nonlinear Time Series Using Singular Spectrum Analysis and Fuzzy Entropy 被引量:1
19
作者 江剑 谢洪波 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期19-23,共5页
We present a hybrid singular spectrum analysis (SSA) and fuzzy entropy method to filter noisy nonlinear time series. With this approach, SSA decomposes the noisy time series into its constituent components including... We present a hybrid singular spectrum analysis (SSA) and fuzzy entropy method to filter noisy nonlinear time series. With this approach, SSA decomposes the noisy time series into its constituent components including both the deterministic behavior and noise, while fuzzy entropy automatically differentiates the optimal dominant components from the noise based on the complexity of each component. We demonstrate the effectiveness of the hybrid approach in reconstructing the Lorenz and Mackey--Class attractors, as well as improving the multi-step prediction quality of these two series in noisy environments. 展开更多
关键词 of on or in denoising Nonlinear Time Series Using Singular Spectrum Analysis and Fuzzy Entropy NLP IS
在线阅读 下载PDF
Simultaneous denoising and resolution enhancement of seismic data based on elastic convolution dictionary learning 被引量:1
20
作者 Nan-Ying Lan Fan-Chang Zhang +1 位作者 Kai-Heng Sang Xing-Yao Yin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2127-2140,共14页
Enhancing seismic resolution is a key component in seismic data processing, which plays a valuable role in raising the prospecting accuracy of oil reservoirs. However, in noisy situations, existing resolution enhancem... Enhancing seismic resolution is a key component in seismic data processing, which plays a valuable role in raising the prospecting accuracy of oil reservoirs. However, in noisy situations, existing resolution enhancement methods are difficult to yield satisfactory processing outcomes for reservoir characterization. To solve this problem, we develop a new approach for simultaneous denoising and resolution enhancement of seismic data based on convolution dictionary learning. First, an elastic convolution dictionary learning algorithm is presented to efficiently learn a convolution dictionary with stronger representation capability from the noisy data to be processed. Specifically, the algorithm introduces the elastic L1/2 norm as a sparsity constraint and employs a steepest gradient descent strategy to efficiently solve the frequency-domain linear system with substantial computational cost in a half-quadratic splitting framework. Then, based on the learned convolution dictionary, a weighted convolutional sparse representation paradigm is designed to encode the noisy data to acquire an optimal sparse approximation of the effective signal. Subsequently, a high-resolution dictionary with a broadband spectrum is constructed by the proposed parameter scaling strategy and matched filtering technique on the basis of atomic spectrum modeling. Finally, the optimal sparse approximation of the effective signal and the constructed high-resolution dictionary are used for data reconstruction to obtain the seismic signal with high resolution and high signal-to-noise ratio. Synthetic and field dataset examples are executed to check the effectiveness and reliability of the developed method. The results indicate that this method has a more competitive performance in seismic applications compared with the conventional deconvolution and spectral whitening methods. 展开更多
关键词 Simultaneous denoising and resolution enhancement Elastic convolution dictionary learning Weighted convolutional sparse representation Matched filtering
在线阅读 下载PDF
上一页 1 2 151 下一页 到第
使用帮助 返回顶部