Background:Cotton(Gossypium hirsutum) provides the largest natural fiber for the textile manufacturing industries,but its production is on the decline due to the effects of salinity.Soil salt-alkalization leads to dam...Background:Cotton(Gossypium hirsutum) provides the largest natural fiber for the textile manufacturing industries,but its production is on the decline due to the effects of salinity.Soil salt-alkalization leads to damage in cotton growth and a decrease in yields.Hyperosmolality-gated calcium-permeable channels(OSCA) have been found to be involved in the detection of extracellular changes which trigger an increase in cytosolic free calcium concentration.Hyperosmolality-induced calcium ion increases have been widely speculated to be playing a role in osmosensing in plants.However,the molecular nature of the corresponding calcium ion channels remains unclearly.In this research work,we describe the OSCA genes and their putative function in osmosensing in plants by carrying out genomewide identification,characterization and functional analysis of the significantly up-regulated OSCA gene,GhOSCA1.1 through reverse genetics.Result:A total of 35,21 and 22 OSCA genes were identified in G.hirsutum,G.arboreum,and G.raimondii genomes,respectively,and were classified into four different clades according to their gene structure and phylogenetic relationship.Gene and protein structure analysis indicated that 35 GhOSCA genes contained a conserved RSN17 TM(PF02714) domain.Moreover,the cis-regulatory element analysis indicated that the OSCA genes were involved in response to abiotic stress.Furthermore,the knockdown of one of the highly up-regulated genes,GhOSCA1.1 showed that the virus-induced gene silenced(VIGS) plants were highly sensitive to dehydration and salinity stresses compared with the none VIGS plants as evident with higher concentration levels of oxidant enzymes compared with the antioxidant enzymes on the leaves of the stressed plants.Conclusion:This study provides the first systematic analysis of the OSCA gene family and will be important for understanding the putative functions of the proteins encoded by the OSCA genes in cotton.These results provide a new insight of defense responses in general and lay the foundation for further investigation of the molecular role played by the OSCA genes,thereby providing suitable approaches to improve crop performance under salinity and drought stress conditions.展开更多
It aims to investigate the protective effects of sodium hyaluronate,panthenol,Portulaca oleracea L.and Calendula officinalis L.on hyperosmotic dehydration-induced injury of human immortalized keratinocytes(HaCaT).The ...It aims to investigate the protective effects of sodium hyaluronate,panthenol,Portulaca oleracea L.and Calendula officinalis L.on hyperosmotic dehydration-induced injury of human immortalized keratinocytes(HaCaT).The safety mass concentrations of four raw materials were screened by detecting cell viability,and the secretion of hyaluronic acid(HA)was determined using the ELISA method.The expression of HaCaT barrier function related genes(OVOL1,EREG,TGM1,TGM2,IVL,IRF6,THBS1,CASP14)was detected at the mRNA level to explore the regulatory effect of four raw materials on these genes.The results demonstrate that pretreatment with the four kinds of raw materials could increase the cell viability after hyperosmotic dehydration,promote the secretion of HA,and improve the expression of barrier function related genes after hyperosmotic dehydration,among which panthenol and Calendula officinalis L.are better.The results show that the four raw materials have a certain protective effect on the hyperosmotic dehydration cell model,which provides data support for its application in cosmetics.展开更多
Freezing stress presents a severe threat for winter wheat(Triticum aestivum L.)during overwintering.Dehydration plays a significant role in plant cold-hardiness.In this study,dehydration-related traits were investigat...Freezing stress presents a severe threat for winter wheat(Triticum aestivum L.)during overwintering.Dehydration plays a significant role in plant cold-hardiness.In this study,dehydration-related traits were investigated between highly and tender freezing-tolerant winter wheat cultivars during the overwintering period.Accompanied by a decrease in temperature,the water content in crowns of highly freezing-tolerant winter wheat was significantly lower compared to that of tender freezing-tolerant winter wheat(control).The ratio of free and bound water content had slight changes in highly freezing-tolerant winter wheat,though there were wide fluctuations in the control.The transcript levels of dehydration-related genes were more expressed in the highly freezing-tolerant winter wheat than those in the control under freezing stress.The plant growth also showed significant differences between the two winter wheat cultivars.Based on these results,the study proposed that the highly freezing-tolerant winter wheat produces higher expression of dehydrins under freezing stress,causing additional dehydration in the tissue to avoid cell death caused by the formation of ice crystals.Furthermore,winter hardy cultivar also reduced the percentage of free water content that inhibited plant growth,and regulated the water composition for plant survival under freezing stress.展开更多
In recent decades,MgSO_(4)·7H_(2)O(epsomite)has attracted significant attention as a promising thermochemical-based thermal energy storage material due to its high theoretical energy density,wide availability,and...In recent decades,MgSO_(4)·7H_(2)O(epsomite)has attracted significant attention as a promising thermochemical-based thermal energy storage material due to its high theoretical energy density,wide availability,and affordability.Despite extensive research efforts,progress in achieving high-energy density has been limited,primarily due to inadequate understanding of its reaction mechanisms and unfavorable dehydration/hydration kinetics.This study systematically investigated the hydration/dehydration kinetics and cyclability of MgSO_(4)·7H_(2)O.The results reveal that the dehydration process is influenced by the heating rate,with an optimal rate of 5℃/min,resulting in a seven-step MgSO_(4)·7H_(2)O dehydration process with a dehydration heat close to the theoretical value.The reaction kinetic analysis indicated that the rate of hydration was approximately 50%lower than that of dehydration.In addition,thermal cycling tests of MgSO_(4)·7H_(2)O under the conditions of this study(small sample size)indicated good cyclability,with hydration rates increasing with increasing cycling numbers up to approximately 10 cycles where level-off occurs.These results are consistent with scanning electron microscopy analyses,which revealed the formation of cracks and channels in the salt hydrate particles,facilitating mass transfer and improved kinetics.展开更多
Sulfated zirconia(SZ)and two promoted 1% Mn/SZ catalysts which have been prepared via sol gel(Mn/SZ-S)and impregnation(Mn/SZ-I)methods were studied.The morphology of the catalysts was characterized by XRD,BET,NH3-TPD,...Sulfated zirconia(SZ)and two promoted 1% Mn/SZ catalysts which have been prepared via sol gel(Mn/SZ-S)and impregnation(Mn/SZ-I)methods were studied.The morphology of the catalysts was characterized by XRD,BET,NH3-TPD,ICP,SEM and FT-IR analysis.The conversion of methanol to dimethyl ether and hydrocarbons was carried out in the temperature range of 120−300℃.The Mn/SZ-S showed the highest activity due to the high surface area with suitable acidity.The optimum condition of Mn/SZ-S catalyst was investigated at 200℃ and LHSV of 0.02 h^−1 in a time range from 30 to 210 min.It was found that the total conversion decreased from 80.18% to 53.26% at 210 min.The reusability of this catalyst was studied at the optimum condition up till four cycles for 1 h.The characterization of the reused catalyst showed a significant change in the structure and surface acidity due to the blockage of the surface acid sited by carbonaceous materials.展开更多
Taking the saline lake bischofite and NH4Cl that was removed with the ammonia method and continuously followed by filtration as raw materials with a molar ratio of 1∶1 of MgCl2 to NH4Cl, ammonium carnallite was synth...Taking the saline lake bischofite and NH4Cl that was removed with the ammonia method and continuously followed by filtration as raw materials with a molar ratio of 1∶1 of MgCl2 to NH4Cl, ammonium carnallite was synthesized. And then the ammonium carnallite was dehydrated to some extent at 160℃ for 4 h. Ammonium carnallite reacted with ammonia at 240℃ for 150 min and the ammonation ammonium carnallite was produced. Finally, the ammonation ammonium carnallite was calcined at 750℃ into anhydrous magnesium chloride containing only 0.1%(mass fraction) of MgO. On the other hand, dehydrated ammonium carnallite was mixed with the solid ammonium chloride at mass ratio 1∶4 at high temperature and with the differential pressure of NH3 above 30.5kPa. The dehydrated ammonium carnallite of mixture was dehydrated at 410℃, and then calcined at 700℃ into anhydrous magnesium chloride with only 0.087%(mass fraction) of MgO. X-ray diffraction and electron microscopy analysis results prove that anhydrous magnesium chloride obtained by both methods hasn’t mixed phases, the particle is large and even has good dispersion, which is suitable for preparation of metal magnesium in the electrolysis.展开更多
The high water content of corn grain at harvest is a challenge in Northeast China,where the growing season is short.Using a dehydrating agent before harvest can help corn seeds dehydrate quickly.The dry matter accumul...The high water content of corn grain at harvest is a challenge in Northeast China,where the growing season is short.Using a dehydrating agent before harvest can help corn seeds dehydrate quickly.The dry matter accumulation and nutrient quality of maize were systematically studied by field experiments and instrumental analysis using maize varieties of different maturities as test materials.The results showed that the accumulation of dry matter was enhanced by an increased dosage of a dehydrating agent.When the dehydrating agent dosage reached 1800 mL•hm-2,the dry matter accumulation of early-maturing varieties increased by 24.1 g,and the water content decreased by 8.08%.Different maize varieties were treated with the same dose;early-maturing varieties showed significant effects on grain dry matter accumulation,and kernel dry matter accumulation increased by 7%.The effects of different doses on grain dehydration were obvious,and the effects on different maize varieties varied.Medium-ripening maize varieties showed the most significant effect,with a 19.5%reduction in water content.The effects of dehydrating agent doses on maize yield,grain nutrient quality and seed germination rate were not significant.Therefore,a dehydrating agent promoted the accumulation of dry matter in grain and accelerated the rapid dehydration.展开更多
The impregnations of different kinds of titania support with aqueous solution or ferricions at various pH values and with the solution of these ions in a polar aprotic solvent,dimethylformamide(DMF),were invcstigated....The impregnations of different kinds of titania support with aqueous solution or ferricions at various pH values and with the solution of these ions in a polar aprotic solvent,dimethylformamide(DMF),were invcstigated.The results suggest that the surface ofhydrated titania is amphoteric,and has the function of a cationic exchanger,its ion ex-change properties arc dependent on the pH of the impregnating solutions.The higher theconcentration of metal ions in the impregnating solution and the more polar thc solvent,thehigher the loading on the support material having thc higher degree of crystallinity and alarger surface area without any pretreatments such as dehydration and calcination.展开更多
基金funded by the National Natural Science Foundation of China(31530053/31621005)the National Key R&D Program(2016YFD0101401/2017YFD0101601)
文摘Background:Cotton(Gossypium hirsutum) provides the largest natural fiber for the textile manufacturing industries,but its production is on the decline due to the effects of salinity.Soil salt-alkalization leads to damage in cotton growth and a decrease in yields.Hyperosmolality-gated calcium-permeable channels(OSCA) have been found to be involved in the detection of extracellular changes which trigger an increase in cytosolic free calcium concentration.Hyperosmolality-induced calcium ion increases have been widely speculated to be playing a role in osmosensing in plants.However,the molecular nature of the corresponding calcium ion channels remains unclearly.In this research work,we describe the OSCA genes and their putative function in osmosensing in plants by carrying out genomewide identification,characterization and functional analysis of the significantly up-regulated OSCA gene,GhOSCA1.1 through reverse genetics.Result:A total of 35,21 and 22 OSCA genes were identified in G.hirsutum,G.arboreum,and G.raimondii genomes,respectively,and were classified into four different clades according to their gene structure and phylogenetic relationship.Gene and protein structure analysis indicated that 35 GhOSCA genes contained a conserved RSN17 TM(PF02714) domain.Moreover,the cis-regulatory element analysis indicated that the OSCA genes were involved in response to abiotic stress.Furthermore,the knockdown of one of the highly up-regulated genes,GhOSCA1.1 showed that the virus-induced gene silenced(VIGS) plants were highly sensitive to dehydration and salinity stresses compared with the none VIGS plants as evident with higher concentration levels of oxidant enzymes compared with the antioxidant enzymes on the leaves of the stressed plants.Conclusion:This study provides the first systematic analysis of the OSCA gene family and will be important for understanding the putative functions of the proteins encoded by the OSCA genes in cotton.These results provide a new insight of defense responses in general and lay the foundation for further investigation of the molecular role played by the OSCA genes,thereby providing suitable approaches to improve crop performance under salinity and drought stress conditions.
文摘It aims to investigate the protective effects of sodium hyaluronate,panthenol,Portulaca oleracea L.and Calendula officinalis L.on hyperosmotic dehydration-induced injury of human immortalized keratinocytes(HaCaT).The safety mass concentrations of four raw materials were screened by detecting cell viability,and the secretion of hyaluronic acid(HA)was determined using the ELISA method.The expression of HaCaT barrier function related genes(OVOL1,EREG,TGM1,TGM2,IVL,IRF6,THBS1,CASP14)was detected at the mRNA level to explore the regulatory effect of four raw materials on these genes.The results demonstrate that pretreatment with the four kinds of raw materials could increase the cell viability after hyperosmotic dehydration,promote the secretion of HA,and improve the expression of barrier function related genes after hyperosmotic dehydration,among which panthenol and Calendula officinalis L.are better.The results show that the four raw materials have a certain protective effect on the hyperosmotic dehydration cell model,which provides data support for its application in cosmetics.
基金Supported by Youth Innovation Talent Project of the General Undergraduate Universities in Heilongjiang Province(UNPYSCT-2018156)。
文摘Freezing stress presents a severe threat for winter wheat(Triticum aestivum L.)during overwintering.Dehydration plays a significant role in plant cold-hardiness.In this study,dehydration-related traits were investigated between highly and tender freezing-tolerant winter wheat cultivars during the overwintering period.Accompanied by a decrease in temperature,the water content in crowns of highly freezing-tolerant winter wheat was significantly lower compared to that of tender freezing-tolerant winter wheat(control).The ratio of free and bound water content had slight changes in highly freezing-tolerant winter wheat,though there were wide fluctuations in the control.The transcript levels of dehydration-related genes were more expressed in the highly freezing-tolerant winter wheat than those in the control under freezing stress.The plant growth also showed significant differences between the two winter wheat cultivars.Based on these results,the study proposed that the highly freezing-tolerant winter wheat produces higher expression of dehydrins under freezing stress,causing additional dehydration in the tissue to avoid cell death caused by the formation of ice crystals.Furthermore,winter hardy cultivar also reduced the percentage of free water content that inhibited plant growth,and regulated the water composition for plant survival under freezing stress.
文摘In recent decades,MgSO_(4)·7H_(2)O(epsomite)has attracted significant attention as a promising thermochemical-based thermal energy storage material due to its high theoretical energy density,wide availability,and affordability.Despite extensive research efforts,progress in achieving high-energy density has been limited,primarily due to inadequate understanding of its reaction mechanisms and unfavorable dehydration/hydration kinetics.This study systematically investigated the hydration/dehydration kinetics and cyclability of MgSO_(4)·7H_(2)O.The results reveal that the dehydration process is influenced by the heating rate,with an optimal rate of 5℃/min,resulting in a seven-step MgSO_(4)·7H_(2)O dehydration process with a dehydration heat close to the theoretical value.The reaction kinetic analysis indicated that the rate of hydration was approximately 50%lower than that of dehydration.In addition,thermal cycling tests of MgSO_(4)·7H_(2)O under the conditions of this study(small sample size)indicated good cyclability,with hydration rates increasing with increasing cycling numbers up to approximately 10 cycles where level-off occurs.These results are consistent with scanning electron microscopy analyses,which revealed the formation of cracks and channels in the salt hydrate particles,facilitating mass transfer and improved kinetics.
文摘Sulfated zirconia(SZ)and two promoted 1% Mn/SZ catalysts which have been prepared via sol gel(Mn/SZ-S)and impregnation(Mn/SZ-I)methods were studied.The morphology of the catalysts was characterized by XRD,BET,NH3-TPD,ICP,SEM and FT-IR analysis.The conversion of methanol to dimethyl ether and hydrocarbons was carried out in the temperature range of 120−300℃.The Mn/SZ-S showed the highest activity due to the high surface area with suitable acidity.The optimum condition of Mn/SZ-S catalyst was investigated at 200℃ and LHSV of 0.02 h^−1 in a time range from 30 to 210 min.It was found that the total conversion decreased from 80.18% to 53.26% at 210 min.The reusability of this catalyst was studied at the optimum condition up till four cycles for 1 h.The characterization of the reused catalyst showed a significant change in the structure and surface acidity due to the blockage of the surface acid sited by carbonaceous materials.
基金Project(2000 G 101) supported by the Key Science and Technology Research Project of Qinghai Province
文摘Taking the saline lake bischofite and NH4Cl that was removed with the ammonia method and continuously followed by filtration as raw materials with a molar ratio of 1∶1 of MgCl2 to NH4Cl, ammonium carnallite was synthesized. And then the ammonium carnallite was dehydrated to some extent at 160℃ for 4 h. Ammonium carnallite reacted with ammonia at 240℃ for 150 min and the ammonation ammonium carnallite was produced. Finally, the ammonation ammonium carnallite was calcined at 750℃ into anhydrous magnesium chloride containing only 0.1%(mass fraction) of MgO. On the other hand, dehydrated ammonium carnallite was mixed with the solid ammonium chloride at mass ratio 1∶4 at high temperature and with the differential pressure of NH3 above 30.5kPa. The dehydrated ammonium carnallite of mixture was dehydrated at 410℃, and then calcined at 700℃ into anhydrous magnesium chloride with only 0.087%(mass fraction) of MgO. X-ray diffraction and electron microscopy analysis results prove that anhydrous magnesium chloride obtained by both methods hasn’t mixed phases, the particle is large and even has good dispersion, which is suitable for preparation of metal magnesium in the electrolysis.
基金Supported by the Research and Development Plan of Applied Technology in Heilongjiang Province(GA19B104)。
文摘The high water content of corn grain at harvest is a challenge in Northeast China,where the growing season is short.Using a dehydrating agent before harvest can help corn seeds dehydrate quickly.The dry matter accumulation and nutrient quality of maize were systematically studied by field experiments and instrumental analysis using maize varieties of different maturities as test materials.The results showed that the accumulation of dry matter was enhanced by an increased dosage of a dehydrating agent.When the dehydrating agent dosage reached 1800 mL•hm-2,the dry matter accumulation of early-maturing varieties increased by 24.1 g,and the water content decreased by 8.08%.Different maize varieties were treated with the same dose;early-maturing varieties showed significant effects on grain dry matter accumulation,and kernel dry matter accumulation increased by 7%.The effects of different doses on grain dehydration were obvious,and the effects on different maize varieties varied.Medium-ripening maize varieties showed the most significant effect,with a 19.5%reduction in water content.The effects of dehydrating agent doses on maize yield,grain nutrient quality and seed germination rate were not significant.Therefore,a dehydrating agent promoted the accumulation of dry matter in grain and accelerated the rapid dehydration.
文摘The impregnations of different kinds of titania support with aqueous solution or ferricions at various pH values and with the solution of these ions in a polar aprotic solvent,dimethylformamide(DMF),were invcstigated.The results suggest that the surface ofhydrated titania is amphoteric,and has the function of a cationic exchanger,its ion ex-change properties arc dependent on the pH of the impregnating solutions.The higher theconcentration of metal ions in the impregnating solution and the more polar thc solvent,thehigher the loading on the support material having thc higher degree of crystallinity and alarger surface area without any pretreatments such as dehydration and calcination.