A smart homing guidance strategy with control saturation against a target-defender team is derived. It is noteworthy that a cooperative strategy of the target-defender team is applied,which has been proved more challe...A smart homing guidance strategy with control saturation against a target-defender team is derived. It is noteworthy that a cooperative strategy of the target-defender team is applied,which has been proved more challenging for the homing guidance.The defender missile is launched by the target and guided by a cooperative augmented proportional navigation(APN). At the same time, the target performs a one-switch maneuver to cooperate and minimize the defender's acceleration requirement. The problem is analyzed for arbitrary-order linear dynamics of the agents in the linearized form but validated by the mathematical simulations by using nonlinear kinematics. The perfect information of three agents' states is assumed. Then, a method to deal with the target-defender team is proposed. It contains a combined performance index penalizing the miss distance relative to the target and energy consumption in the whole duration. Besides, the specific miss distance related to the defender is regarded as an inequality constraint. An analytical solution for the smart guidance strategy against the APN guided defender is derived. Meanwhile, the control saturations are introduced to get more realistic and reasonable insights to this practical target-missile-defender problem. A simple but effective iterative searching technique is proposed to determine the saturation time points. The solution provides an optimal homing strategy to evade the defender with a specific miss distance and intercept the target with the minimum miss distance in the minimum energy manner. Nonlinear two-dimensional simulation results are used to validate the theoretical analysis. By comparison with the optimal differential game guidance(ODGG) and the combined minimum effort guidance(CMEG), the superiority of this smart guidance strategy is concluded.展开更多
As to oppositional, multi-objective and hierarchical characteristic of air formation to ground attackdefends campaign, and using dynamic space state model of military campaign, this article establishes a principal and...As to oppositional, multi-objective and hierarchical characteristic of air formation to ground attackdefends campaign, and using dynamic space state model of military campaign, this article establishes a principal and subordinate hierarchical interactive decision-making way, the Nash-Stackelberg-Nash model, to solve the problems in military operation, and find out the associated best strategy in hierarchical dynamic decision-making. The simulating result indicate that when applying the model to air formation to ground attack-defends decision-making system, it can solve the problems of two hierarchies, dynamic oppositional decision-making favorably, and reach preferable effect in battle. It proves that the model can provide an effective way for analyzing a battle,展开更多
近日,东南大学计算机与科学工程学院白如帆在人工智能领域国际期刊《Artificial Intelligence》(AIJ,CCF A)上发表题为“On the Computation of Mixed Strategies for Security Games with General Defending Requirements”的论文,介...近日,东南大学计算机与科学工程学院白如帆在人工智能领域国际期刊《Artificial Intelligence》(AIJ,CCF A)上发表题为“On the Computation of Mixed Strategies for Security Games with General Defending Requirements”的论文,介绍该团队在智能体安全博弈领域内的最新研究成果,白如帆老师为论文唯一第一作者,这也是东南大学第二次以第一、通信单位身份在该期刊发表论文。展开更多
基金supported by the National Natural Science Foundation of China(91216104 61503302)
文摘A smart homing guidance strategy with control saturation against a target-defender team is derived. It is noteworthy that a cooperative strategy of the target-defender team is applied,which has been proved more challenging for the homing guidance.The defender missile is launched by the target and guided by a cooperative augmented proportional navigation(APN). At the same time, the target performs a one-switch maneuver to cooperate and minimize the defender's acceleration requirement. The problem is analyzed for arbitrary-order linear dynamics of the agents in the linearized form but validated by the mathematical simulations by using nonlinear kinematics. The perfect information of three agents' states is assumed. Then, a method to deal with the target-defender team is proposed. It contains a combined performance index penalizing the miss distance relative to the target and energy consumption in the whole duration. Besides, the specific miss distance related to the defender is regarded as an inequality constraint. An analytical solution for the smart guidance strategy against the APN guided defender is derived. Meanwhile, the control saturations are introduced to get more realistic and reasonable insights to this practical target-missile-defender problem. A simple but effective iterative searching technique is proposed to determine the saturation time points. The solution provides an optimal homing strategy to evade the defender with a specific miss distance and intercept the target with the minimum miss distance in the minimum energy manner. Nonlinear two-dimensional simulation results are used to validate the theoretical analysis. By comparison with the optimal differential game guidance(ODGG) and the combined minimum effort guidance(CMEG), the superiority of this smart guidance strategy is concluded.
基金College Doctor Foundation (20060699026)Aviation Basic Scientific Foundation (05D53021).
文摘As to oppositional, multi-objective and hierarchical characteristic of air formation to ground attackdefends campaign, and using dynamic space state model of military campaign, this article establishes a principal and subordinate hierarchical interactive decision-making way, the Nash-Stackelberg-Nash model, to solve the problems in military operation, and find out the associated best strategy in hierarchical dynamic decision-making. The simulating result indicate that when applying the model to air formation to ground attack-defends decision-making system, it can solve the problems of two hierarchies, dynamic oppositional decision-making favorably, and reach preferable effect in battle. It proves that the model can provide an effective way for analyzing a battle,
文摘近日,东南大学计算机与科学工程学院白如帆在人工智能领域国际期刊《Artificial Intelligence》(AIJ,CCF A)上发表题为“On the Computation of Mixed Strategies for Security Games with General Defending Requirements”的论文,介绍该团队在智能体安全博弈领域内的最新研究成果,白如帆老师为论文唯一第一作者,这也是东南大学第二次以第一、通信单位身份在该期刊发表论文。