期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Status and Development of Rapid Detection Technology for Tunnel Structural Defects 被引量:2
1
作者 LIU Xuezeng FANG Maoliu +3 位作者 WU Dexing LI Yinping LIU Xingen LI Gang 《隧道建设(中英文)》 北大核心 2025年第4期657-676,I0005-I0024,共40页
Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,an... Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,and defects behind the structure.To address the need for rapid detection of different defect types,the current state of rapid detection technologies and equipment,both domestically and internationally,is systematically reviewed.The research reveals that surface defect detection technologies and equipment have developed rapidly in recent years.Notably,the integration of machine vision and laser scanning technologies have significantly improved detection efficiency and accuracy,achieving crack detection precision of up to 0.1 mm.However,the non-contact rapid detection of internal and behind-the-structure defects remains constrained by hardware limitations,with traditional detection remaining dominant.Nevertheless,phased array radar,ultrasonic,and acoustic vibration detection technologies have become research hotspots in recent years,offering promising directions for detecting these challenging defect types.Additionally,the application of multisensor fusion technology in rapid detection equipment has further enhanced detection capabilities.Devices such as cameras,3D laser scanners,infrared thermal imagers,and radar demonstrate significant advantages in rapid detection.Future research in tunnel inspection should prioritize breakthroughs in rapid detection technologies for internal and behind-the-structure defects.Efforts should also focus on developing multifunctional integrated detection vehicles that can simultaneously inspect both surface and internal structures.Furthermore,progress in fully automated,intelligent systems with precise defect identification and real-time reporting will be essential to significantly improve the efficiency and accuracy of tunnel inspection. 展开更多
关键词 TUNNEL structural defect inspection techniques inspection equipment rapid inspection
在线阅读 下载PDF
Dual circularly polarized monostatic STAR antenna with enhanced isolation
2
作者 XIE Mingcong WEI Xizhang +1 位作者 TANG Yanqun HU Dujuan 《Journal of Systems Engineering and Electronics》 2025年第1期73-81,共9页
Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation p... Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation patterns. In this paper,a dual circularly polarized(CP) monostatic simultaneous transmit and receive(MSTAR) antenna with enhanced isolation is proposed to alleviate the problem. The proposed antenna consists of one sequentially rotating array(SRA), two beamforming networks(BFN), and a combined decoupling structure. The SRA is shared by the transmit and receive to reduce the size of the antenna and to obtain a consistent transmit and receive pattern.The BFN achieve right-hand CP for transmit and left-hand CP for receive. By exploring the combined decoupling structure of uniplanar compact electromagnetic band gap(UC-EBG) and ringshaped defected ground structure(RS-DGS), good transmitreceive isolation is achieved. The proposed antenna prototype is fabricated and experimentally characterized. The simulated and measured results show good agreement. The demonstrate transmit/receive isolation is height than 33 dB, voltage standing wave ratio is lower than 2, axial ratio is lower than 3 dB, and consistent radiation for both transmit and receive is within4.25-4.35 GHz. 展开更多
关键词 dual circularly polarization(CP) monostatic simultaneous transmit and receive(MSTAR) sequential rotation array(SRA) uniplanar compact electromagnetic band gap(UC-EBG) ring-shaped defected ground structure(RS-DGS)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部