Out-of-plane microneedle structures are widely used in various applications such as transcutaneous drug delivery and neural signal recording for brain machine interface.This work presents a novel but simple method to ...Out-of-plane microneedle structures are widely used in various applications such as transcutaneous drug delivery and neural signal recording for brain machine interface.This work presents a novel but simple method to fabricate high-density silicon(Si)microneedle arrays with various heights and diverse cross-sectional shapes depending on photomask pattern designs.The proposed fabrication method is composed of a single photolithography and two subsequent deep reactive ion etching(DRIE)steps.First,a photoresist layer was patterned on a Si substrate to define areas to be etched,which will eventually determine the final location and shape of each individual microneedle.Then,the 1st DRIE step created deep trenches with a highly anisotropic etching of the Si substrate.Subsequently,the photoresist was removed for more isotropic etching;the 2nd DRIE isolated and sharpened microneedles from the predefined trench structures.Depending on diverse photomask designs,the 2nd DRIE formed arrays of microneedles that have various height distributions,as well as diverse cross-sectional shapes across the substrate.With these simple steps,high-aspect ratio microneedles were created in the high density of up to 625 microneedles mm^(-2)on a Si wafer.Insertion tests showed a small force as low as~172μN/microneedle is required for microneedle arrays to penetrate the dura mater of a mouse brain.To demonstrate a feasibility of drug delivery application,we also implemented silk microneedle arrays using molding processes.The fabrication method of the present study is expected to be broadly applicable to create microneedle structures for drug delivery,neuroprosthetic devices,and so on.展开更多
One of the major challenges faced by the biomedical industry is the development of robust synthetic surfaces that can resist bacterial colonization. Much inspiration has been drawn recently from naturally occurring me...One of the major challenges faced by the biomedical industry is the development of robust synthetic surfaces that can resist bacterial colonization. Much inspiration has been drawn recently from naturally occurring mechano-bactericidal surfaces such as the wings of cicada(Psaltoda claripennis) and dragonfly(Diplacodes bipunctata) species in fabricating their synthetic analogs. However,the bactericidal activity of nanostructured surfaces is observed in a particular range of parameters reflecting the geometry of nanostructures and surface wettability. Here,several of the nanometer-scale characteristics of black silicon(bSi) surfaces including the density and height of the nanopillars that have the potential to influence the bactericidal efficiency of these nanostructured surfaces have been investigated. The results provide important evidence that minor variations in the nanoarchitecture of substrata can substantially alter their performance as bactericidal surfaces.展开更多
基金This work was supported by KIST(Korea Institute of Science and Technology)institutional grants(2E30965,and 2V07360)the National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(Nos.2020R1C1C1006065,2021M3F3A2A01037366)+1 种基金This work was also supported by the Korea Medical Device Development Fund grant funded by the Korea government(the Ministry of Science and ICT,the Ministry of Trade,Industry and Energy,the Ministry of Health&Welfarethe Ministry of Food and Drug Safety)(Project Number:9991006818,KMDF_PR_20200901_0145-2021).
文摘Out-of-plane microneedle structures are widely used in various applications such as transcutaneous drug delivery and neural signal recording for brain machine interface.This work presents a novel but simple method to fabricate high-density silicon(Si)microneedle arrays with various heights and diverse cross-sectional shapes depending on photomask pattern designs.The proposed fabrication method is composed of a single photolithography and two subsequent deep reactive ion etching(DRIE)steps.First,a photoresist layer was patterned on a Si substrate to define areas to be etched,which will eventually determine the final location and shape of each individual microneedle.Then,the 1st DRIE step created deep trenches with a highly anisotropic etching of the Si substrate.Subsequently,the photoresist was removed for more isotropic etching;the 2nd DRIE isolated and sharpened microneedles from the predefined trench structures.Depending on diverse photomask designs,the 2nd DRIE formed arrays of microneedles that have various height distributions,as well as diverse cross-sectional shapes across the substrate.With these simple steps,high-aspect ratio microneedles were created in the high density of up to 625 microneedles mm^(-2)on a Si wafer.Insertion tests showed a small force as low as~172μN/microneedle is required for microneedle arrays to penetrate the dura mater of a mouse brain.To demonstrate a feasibility of drug delivery application,we also implemented silk microneedle arrays using molding processes.The fabrication method of the present study is expected to be broadly applicable to create microneedle structures for drug delivery,neuroprosthetic devices,and so on.
基金funding from Marie Curie Actions under EU FP7 Initial Training Network SNAL 608184
文摘One of the major challenges faced by the biomedical industry is the development of robust synthetic surfaces that can resist bacterial colonization. Much inspiration has been drawn recently from naturally occurring mechano-bactericidal surfaces such as the wings of cicada(Psaltoda claripennis) and dragonfly(Diplacodes bipunctata) species in fabricating their synthetic analogs. However,the bactericidal activity of nanostructured surfaces is observed in a particular range of parameters reflecting the geometry of nanostructures and surface wettability. Here,several of the nanometer-scale characteristics of black silicon(bSi) surfaces including the density and height of the nanopillars that have the potential to influence the bactericidal efficiency of these nanostructured surfaces have been investigated. The results provide important evidence that minor variations in the nanoarchitecture of substrata can substantially alter their performance as bactericidal surfaces.