期刊文献+
共找到661篇文章
< 1 2 34 >
每页显示 20 50 100
基于GWO-DBN的反导装备体系效能评估方法研究 被引量:1
1
作者 赵海燕 周峰 +2 位作者 杨文静 刘迪 杨添元 《现代防御技术》 北大核心 2025年第2期45-54,共10页
针对现有效能预测方法难以反映反导装备体系实际效能的问题,提出一种基于“数据驱动+深度学习”的反导装备体系效能评估方法。在大量实验数据抽取、处理、分析的基础上,构建灰狼优化算法-深度置信网络(GWO-DBN)模型对数据进行训练学习,... 针对现有效能预测方法难以反映反导装备体系实际效能的问题,提出一种基于“数据驱动+深度学习”的反导装备体系效能评估方法。在大量实验数据抽取、处理、分析的基础上,构建灰狼优化算法-深度置信网络(GWO-DBN)模型对数据进行训练学习,以此获得反导装备体系效能的非线性拟合,并以某次反导体系效能评估为例进行了仿真实验。结果表明,该评估方法可行、可靠,能够为反导装备体系论证和改进提供较高的参考价值和借鉴意义。 展开更多
关键词 反导装备体系 效能评估 数据驱动 深度学习 灰狼优化算法(GWO) 深度置信网络(dbn)
在线阅读 下载PDF
Nonlinear inversion for magnetotelluric sounding based on deep belief network 被引量:10
2
作者 WANG He LIU Wei XI Zhen-zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2482-2494,共13页
To improve magnetotelluric(MT)nonlinear inversion accuracy and stability,this work introduces the deep belief network(DBN)algorithm.Firstly,a network frame is set up for training in different 2D MT models.The network ... To improve magnetotelluric(MT)nonlinear inversion accuracy and stability,this work introduces the deep belief network(DBN)algorithm.Firstly,a network frame is set up for training in different 2D MT models.The network inputs are the apparent resistivities of known models,and the outputs are the model parameters.The optimal network structure is achieved by determining the numbers of hidden layers and network nodes.Secondly,the learning process of the DBN is implemented to obtain the optimal solution of network connection weights for known geoelectric models.Finally,the trained DBN is verified through inversion tests,in which the network inputs are the apparent resistivities of unknown models,and the outputs are the corresponding model parameters.The experiment results show that the DBN can make full use of the global searching capability of the restricted Boltzmann machine(RBM)unsupervised learning and the local optimization of the back propagation(BP)neural network supervised learning.Comparing to the traditional neural network inversion,the calculation accuracy and stability of the DBN for MT data inversion are improved significantly.And the tests on synthetic data reveal that this method can be applied to MT data inversion and achieve good results compared with the least-square regularization inversion. 展开更多
关键词 MAGNETOTELLURICS nonlinear inversion deep learning deep belief network
在线阅读 下载PDF
Multi-channel electromyography pattern classification using deep belief networks for enhanced user experience 被引量:1
3
作者 SHIM Hyeon-min LEE Sangmin 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1801-1808,共8页
An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-v... An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-varying characteristics.Therefore, in several previous studies, various machine-learning methods have been applied. A DBN is a fast, greedy learning algorithm that can find a fairly good set of weights rapidly, even in deep networks with a large number of parameters and many hidden layers. To evaluate this model, we acquired EMG signals, extracted their features, and then compared the model with the DBN and other conventional classifiers. The accuracy of the DBN is higher than that of the other algorithms. The classification performance of the DBN model designed is approximately 88.60%. It is 7.55%(p=9.82×10-12) higher than linear discriminant analysis(LDA) and 2.89%(p=1.94×10-5) higher than support vector machine(SVM). Further, the DBN is better than shallow learning algorithms or back propagation(BP), and this model is effective for an EMG-based user-interfaced system. 展开更多
关键词 electromyography(EMG) pattern classification feature extraction deep learning deep belief network(dbn)
在线阅读 下载PDF
Voice activity detection based on deep belief networks using likelihood ratio 被引量:3
4
作者 KIM Sang-Kyun PARK Young-Jin LEE Sangmin 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期145-149,共5页
A novel technique is proposed to improve the performance of voice activity detection(VAD) by using deep belief networks(DBN) with a likelihood ratio(LR). The likelihood ratio is derived from the speech and noise spect... A novel technique is proposed to improve the performance of voice activity detection(VAD) by using deep belief networks(DBN) with a likelihood ratio(LR). The likelihood ratio is derived from the speech and noise spectral components that are assumed to follow the Gaussian probability density function(PDF). The proposed algorithm employs DBN learning in order to classify voice activity by using the input signal to calculate the likelihood ratio. Experiments show that the proposed algorithm yields improved results in various noise environments, compared to the conventional VAD algorithms. Furthermore, the DBN based algorithm decreases the detection probability of error with [0.7, 2.6] compared to the support vector machine based algorithm. 展开更多
关键词 voice activity detection likelihood ratio deep belief networks
在线阅读 下载PDF
基于近红外光谱和PCA-DBN-SVM的猪肉种类识别
5
作者 许新华 杨礼波 司夏萌 《食品与机械》 北大核心 2025年第3期50-56,共7页
[目的]提高猪肉的分类精度,建立基于近红外光谱和PCA-DBN-SVM的猪肉种类识别模型。[方法]结合猪肉的近红外光谱特征信息,利用PCA进行降维和特征提取,并采用DBN-SVM进行分类识别,构建一个融合近红外光谱信息特征和PCA-DBN-SVM模型的猪肉... [目的]提高猪肉的分类精度,建立基于近红外光谱和PCA-DBN-SVM的猪肉种类识别模型。[方法]结合猪肉的近红外光谱特征信息,利用PCA进行降维和特征提取,并采用DBN-SVM进行分类识别,构建一个融合近红外光谱信息特征和PCA-DBN-SVM模型的猪肉种类识别方法。[结果]与KNN模型、RF模型、ELM模型以及DBN组合模型相比,PCA-DBN-SVM模型的猪肉种类分类精度最高,为99.91%。[结论]PCA-DBN-SVM模型具有更高的分类精度。 展开更多
关键词 支持向量机 主成分分析 近红外光谱 深度置信网络
在线阅读 下载PDF
基于灰狼算法优化DBN-SVM的入侵检测方法
6
作者 彭庆媛 王晓峰 +3 位作者 唐傲 王军霞 华盈盈 何飞 《南京大学学报(自然科学版)》 北大核心 2025年第2期270-282,共13页
入侵检测技术作为一种可靠的网络安全防御手段,在保障网络安全方面具有重要意义.深度信念网络(Deep Belief Network,DBN)结合支持向量机(Support Vector Machine,SVM)是一种具有良好泛化能力和分类性能的机器学习方法,在入侵检测领域有... 入侵检测技术作为一种可靠的网络安全防御手段,在保障网络安全方面具有重要意义.深度信念网络(Deep Belief Network,DBN)结合支持向量机(Support Vector Machine,SVM)是一种具有良好泛化能力和分类性能的机器学习方法,在入侵检测领域有着广泛的应用.然而,该方法在处理高维数据时容易出现“维数灾难”问题,并且参数选择对分类性能有很大影响,针对以上不足,提出了一种基于灰狼算法(Grey Wolf Optimization,GWO)优化DBN-SVM的入侵检测方法.在GWO算法中,通过引入自适应狩猎权重系数和改进头狼位置更新公式来加快收敛速度和扩展狼群搜索范围,通过加入最优灰狼个体自适应扰动策略来避免陷入局部最优.进一步利用改进后的GWO算法优化DBN-SVM,并应用于入侵检测.实验结果表明,提出的方法在NSL-KDD和UNSW-NB15数据集上的准确率比未改进的DBN-SVM分别提高6.5%和5.7%,满足入侵检测的应用需求. 展开更多
关键词 深度信念网络 支持向量机 灰狼优化算法 自适应狩猎权重系数 t分布扰动 入侵检测
在线阅读 下载PDF
基于ISCA-DBN的飞机地面空调能耗预测
7
作者 刘涵 林家泉 《北京航空航天大学学报》 北大核心 2025年第6期2176-2184,共9页
为提升飞机客舱使用地面空调制冷时地面空调能耗预测精度,提出一种改进正余弦算法(ISCA)优化深度置信网络(DBN)的地面空调能耗预测模型。与标准正余弦优化算法相比,ISCA提出一种改进Logistic混沌映射,提高了种群多样性;引入余弦调节因子... 为提升飞机客舱使用地面空调制冷时地面空调能耗预测精度,提出一种改进正余弦算法(ISCA)优化深度置信网络(DBN)的地面空调能耗预测模型。与标准正余弦优化算法相比,ISCA提出一种改进Logistic混沌映射,提高了种群多样性;引入余弦调节因子,构建了一种新的非线性振荡调整因子,以平衡算法的全局搜索和局部寻优能力;基于变异进化思想提出一种学习策略,避免算法陷入局部最优。将ISCA-DBN模型应用于波音737-800飞机地面空调能耗预测中,与反向传播(BP)、支持向量机(SVM)、DBN等算法进行性能对比,仿真结果表明:基于ISCADBN的地面空调能耗预测模型在预测精度和实时性上有一定的提升。 展开更多
关键词 飞机客舱 地面空调 能耗预测 正余弦优化 深度置信网络
在线阅读 下载PDF
基于CEEMDAN-能量序列和优化DBN的微电网孤岛检测
8
作者 余飞鸿 吴杰 +3 位作者 夏岩 常政威 熊兴中 陈仁钊 《控制工程》 北大核心 2025年第7期1300-1310,共11页
传统微电网孤岛检测方法中,被动法存在检测盲区大、阈值设定难的问题,主动法存在干扰电能质量的问题。因此,提出一种基于自适应噪声的完全集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDA... 传统微电网孤岛检测方法中,被动法存在检测盲区大、阈值设定难的问题,主动法存在干扰电能质量的问题。因此,提出一种基于自适应噪声的完全集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)-Teager-Kaiser能量算子(Teager-Kaiser energy operator,TKEO)和优化深度置信网络(deep belief network,DBN)的微电网孤岛检测方法。首先,使用CEEMDAN算法分解公共耦合点处的电压和电流信号,得到一系列本征模态函数(intrinsic mode function,IMF),并计算相关系数,确定有效IMF;其次,对有效IMF进行乘积融合,采用TKEO计算融合后的IMF的能量序列,得到重构的孤岛特征;最后,利用粒子群优化算法优化DBN,将提取的特征输入优化后的DBN中进行训练与测试。实验结果表明,所提方法能有效区分不同工况下的孤岛和非孤岛状态,检测准确率可达到99.52%,检测时间为25.326 ms,且抗噪声能力较强。 展开更多
关键词 孤岛检测 自适应噪声的完全集成经验模态分解 Teager-Kaiser能量算子 粒子群优化算法 深度置信网络
在线阅读 下载PDF
基于Deep Belief Nets的中文名实体关系抽取 被引量:73
9
作者 陈宇 郑德权 赵铁军 《软件学报》 EI CSCD 北大核心 2012年第10期2572-2585,共14页
关系抽取是信息抽取的一项子任务,用以识别文本中实体之间的语义关系.提出一种利用DBN(deepbelief nets)模型进行基于特征的实体关系抽取方法,该模型是由多层无监督的RBM(restricted Boltzmann machine)网络和一层有监督的BP(back-propa... 关系抽取是信息抽取的一项子任务,用以识别文本中实体之间的语义关系.提出一种利用DBN(deepbelief nets)模型进行基于特征的实体关系抽取方法,该模型是由多层无监督的RBM(restricted Boltzmann machine)网络和一层有监督的BP(back-propagation)网络组成的神经网络分类器.RBM网络以确保特征向量映射达到最优,最后一层BP网络分类RBM网络的输出特征向量,从而训练实体关系分类器.在ACE04语料上进行的相关测试,一方面证明了字特征比词特征更适用于中文关系抽取任务;另一方面设计了3组不同的实验,分别使用正确的实体类别信息、通过实体类型分类器得到实体类型信息和不使用实体类型信息,用以比较实体类型信息对关系抽取效果的影响.实验结果表明,DBN非常适用于基于高维空间特征的信息抽取任务,获得的效果比SVM和反向传播网络更好. 展开更多
关键词 dbn(deep belief nets) 神经网络 关系抽取 深层网络 字特征
在线阅读 下载PDF
面向入侵检测系统的Deep Belief Nets模型 被引量:23
10
作者 高妮 高岭 贺毅岳 《系统工程与电子技术》 EI CSCD 北大核心 2016年第9期2201-2207,共7页
连续的网络流量会导致海量数据问题,这为入侵检测提出了新的挑战。为此,提出一种面向入侵检测系统的深度信念网络(deep belief nets oriented to the intrusion detection system,DBN-IDS)模型。首先,通过无监督的、贪婪的算法自底向上... 连续的网络流量会导致海量数据问题,这为入侵检测提出了新的挑战。为此,提出一种面向入侵检测系统的深度信念网络(deep belief nets oriented to the intrusion detection system,DBN-IDS)模型。首先,通过无监督的、贪婪的算法自底向上逐层训练每一个受限玻尔兹曼机(restricted Boltzmann machine,RBM)网络,使得大量高维、非线性的无标签数据映射为最优的低维表示;然后利用带标签数据被附加到顶层,通过反向传播(back propagation,BP)算法自顶向下有监督地对RBM网络输出的低维表示进行分类,并同时对RBM网络进行微调;最后,利用NSLKDD数据集对模型参数和性能进行了深入的分析。实验结果表明,DBN-IDS分类效果优于支持向量机(support vector machine,SVM)和神经网络(neural network,NN),适用于高维、非线性的海量入侵数据的分类处理。 展开更多
关键词 入侵检测 神经网络 深度信念网络
在线阅读 下载PDF
基于DBN和BES-LSSVM的矿用压风机异常状态识别方法 被引量:2
11
作者 李敬兆 王克定 +2 位作者 王国锋 郑鑫 石晴 《流体机械》 CSCD 北大核心 2024年第3期89-97,共9页
针对矿用压风机这类分布式系统的异常类别复杂、识别精度低等问题,提出了一种基于深度置信网络(DBN)和最小二乘支持向量机(LSSVM)的异常状态识别方法。首先,分析压风机组成系统及其运行机理,确定常见的异常状态类型;其次,采用DBN无监督... 针对矿用压风机这类分布式系统的异常类别复杂、识别精度低等问题,提出了一种基于深度置信网络(DBN)和最小二乘支持向量机(LSSVM)的异常状态识别方法。首先,分析压风机组成系统及其运行机理,确定常见的异常状态类型;其次,采用DBN无监督学习方式充分挖掘监测数据中异常特征并快速提取;然后,利用秃鹰搜索算法(BES)优化LSSVM的超参数,构建最优的BES-LSSVM分类模型;最后,将DBN提取的异常特征作为BES-LSSVM模型的输入,对矿用压风机异常状态进行识别。试验验证与对比分析结果表明,相较于GA,PSO,GWO算法,BES算法的求解精度和收敛速度均有所提高,同时DBN-BES-LSSVM模型在测试集上平均识别精度达到94.65%,较PCA-LSSVM模型、DBN模型和DBN-LSSVM模型的识别精度分别提高了10.53%,5.84%和3.76%,验证了DBN-BES-LSSVM模型在矿用压风机异常特征提取以及特征识别方面的优越性。 展开更多
关键词 矿用压风机 深度置信网络 秃鹰搜索算法 最小二乘支持向量机 异常识别
在线阅读 下载PDF
基于deep belief nets的维吾尔语句子级情感分析 被引量:3
12
作者 衣马木艾山.阿布都力克木 李敏 +3 位作者 李自臣 陈梅 田生伟 禹龙 《计算机应用研究》 CSCD 北大核心 2018年第7期2066-2070,共5页
针对维吾尔语句子情感信息,即喜、怒、哀、乐和客观五分类任务,提出了一种利用深度信念网络(deep belief nets,DBN)模型的深度学习机制进行基于深层语义特征的句子级情感分析方法。该方法通过对维吾尔语情感句及语言特点的深入研究,提... 针对维吾尔语句子情感信息,即喜、怒、哀、乐和客观五分类任务,提出了一种利用深度信念网络(deep belief nets,DBN)模型的深度学习机制进行基于深层语义特征的句子级情感分析方法。该方法通过对维吾尔语情感句及语言特点的深入研究,提取出利于情感分析任务的八项情感特征。为了提高特征对文本语义的表达,将富含词汇深层语义和上下文信息的word embedding特征与情感特征进行融合,作为深度信念网络的输入。利用多层无监督的波尔兹曼机(RBM)训练并提取隐含的深层语义特征,通过有监督的后向传播算法对网络进行微调,进而完成情感分类任务。该方法在维吾尔语句子级情感分类任务中的准确率为83.35%,召回率为84.42%,F值为83.88%。实验结果证明,深度学习模型较浅层的学习模型更合适于文本的情感分类任务,对word embedding特征项的引入,有效地提高了情感分类模型的性能。 展开更多
关键词 维吾尔语 情感分类 深度学习 深度信念网络 词语嵌入
在线阅读 下载PDF
一种基于SSA-DBN的室内可见光指纹定位算法 被引量:1
13
作者 王鹏云 邵建华 +3 位作者 王宗生 程悦 杨薇 杜聪 《激光杂志》 CAS 北大核心 2024年第1期159-165,共7页
室内可见光定位在精度方面有着较高的要求,针对这一问题,文中提出了一种麻雀搜索算法(Sparrow Search Algorithm,SSA)优化深度置信网络(Deep Belief Network,DBN)的室内可见光指纹定位算法。首先,采用信号强度特征值与位置坐标建立离线... 室内可见光定位在精度方面有着较高的要求,针对这一问题,文中提出了一种麻雀搜索算法(Sparrow Search Algorithm,SSA)优化深度置信网络(Deep Belief Network,DBN)的室内可见光指纹定位算法。首先,采用信号强度特征值与位置坐标建立离线指纹库;其次,利用麻雀搜索算法较好的全局探索和局部开发的能力,对深度置信网络的初始权阈值进行优化,建立网络训练模型,对待定位目标的位置进行预测,避免了DBN陷入局部最优以及收敛速度较慢的问题。最后,利用已建立的离线指纹库数据,计算定位误差并分析。在4 m×4 m×2.5 m的空间中进行实验,结果表明:文中算法的平均定位误差为3.51 cm,定位误差在6 cm以内的概率为89.9%,与DBN定位算法相比,平均定位误差下降了约22.5%。 展开更多
关键词 可见光 室内定位 麻雀搜索算法 深度置信网络
在线阅读 下载PDF
基于CS-DBN的锂电池剩余寿命预测 被引量:10
14
作者 梁佳佳 何晓霞 肖浩逸 《太阳能学报》 EI CAS CSCD 北大核心 2024年第3期251-259,共9页
为了更准确地对锂电池剩余使用寿命进行预测,提出一种基于布谷鸟算法(CS)和深度信念网络(DBN)的预测模型。首先,引进16个影响锂电池RUL的健康因子(HI),通过随机森林(RF)选择出对于剩余寿命预测较为重要的9个HI。随后用CS去寻优深度信念... 为了更准确地对锂电池剩余使用寿命进行预测,提出一种基于布谷鸟算法(CS)和深度信念网络(DBN)的预测模型。首先,引进16个影响锂电池RUL的健康因子(HI),通过随机森林(RF)选择出对于剩余寿命预测较为重要的9个HI。随后用CS去寻优深度信念网络模型中隐藏层的参数,通过寻优,建立最优的深度信念网络预测模型。最后,使用马里兰大学所收集的电池数据(CALCE)进行实验,结果表明:所提出的CS-DBN模型的拟合优度高达98%,且与其他模型的预测结果进行对比,具有更小的误差,验证了所提方法的有效性。 展开更多
关键词 锂离子电池 剩余使用寿命 随机森林 深度信念网络 布谷鸟算法 健康因子
在线阅读 下载PDF
基于加强灰狼优化VMD-DBN的变压器故障检测 被引量:5
15
作者 赵一钧 石雷 +3 位作者 齐笑 郝成钢 祝晓宏 王昕 《电测与仪表》 北大核心 2024年第2期157-163,共7页
针对当前在线识别变压器运行状态困难、低效的问题,通过提取箱壁的振动信号,提出了基于加强灰狼优化变分模态分解(Variational Mode Decomposition,VMD)深度置信网络(Deep Belief Network,DBN)的检测方法。首先,利用加强灰狼算法以能量... 针对当前在线识别变压器运行状态困难、低效的问题,通过提取箱壁的振动信号,提出了基于加强灰狼优化变分模态分解(Variational Mode Decomposition,VMD)深度置信网络(Deep Belief Network,DBN)的检测方法。首先,利用加强灰狼算法以能量误差为适应度函数,优化VMD的重要参数(分解层数k和惩罚因子α),然后分解计算各本征模态分量(Intrinsic Mode Functions,IMF)的能量标值,组成特征数据集,用来表征变压器运行工况。最后使用深度置信网络对特征数据集进行反复学习训练,形成故障诊断模型对变压器状态进行识别。通过实验对比分析VMD能更好地提取信号中有效的特征,提高识别的精准度,同时DBN相较于其他两种经典识别算法,抽象能力更好,学习的能力更强,稳定性更高,能准确识别变压器正常、绕组辐向形变、绕组轴向形变、铁芯故障四种状态。加强灰狼优化VMD-DBN的状态识别率达到了97.45%,均值误差为0.37,相比于其他方法效果最佳。因此,所提方法具有一定的实用价值。 展开更多
关键词 变压器 振动信号 加强灰狼 VMD 深度置信网络
在线阅读 下载PDF
基于DBN的液压泵劣化程度评估方法研究
16
作者 李振宝 伊明 +2 位作者 李富强 张磊 姜万录 《机床与液压》 北大核心 2024年第14期219-226,共8页
针对轴向柱塞泵中心弹簧失效故障难以有效评估的问题,提出一种基于梅尔频率倒谱系数(MFCC)和深度信念神经网络(DBN)的液压泵劣化程度评估方法。对现场采集的正常数据和3种不同程度中心弹簧失效故障的液压泵振动信号进行信号预处理,包括... 针对轴向柱塞泵中心弹簧失效故障难以有效评估的问题,提出一种基于梅尔频率倒谱系数(MFCC)和深度信念神经网络(DBN)的液压泵劣化程度评估方法。对现场采集的正常数据和3种不同程度中心弹簧失效故障的液压泵振动信号进行信号预处理,包括预加重、分帧和加窗等;对预处理后的信号进行快速傅里叶变换(FFT),得到其频率谱和功率谱,然后让其通过Mel滤波器组,得到信号的对数能量;最后对对数能量进行离散余弦变换,得到信号的倒谱系数和一阶差分系数,并以此构成特征向量。基于DBN方法搭建深度学习模型,对特征向量进行学习,将测试样本导入深度学习模型,对中心弹簧失效程度进行评估,并将倒谱系数和一阶差分系数的识别结果进行对比。结果表明:当选择倒谱系数为特征向量时,具有较高的识别精度,能够有效识别轴向柱塞泵中心弹簧的性能劣化程度。 展开更多
关键词 梅尔频率倒谱系数 深度信念神经网络 轴向柱塞泵 劣化评估
在线阅读 下载PDF
基于DBN-ELM的构网型并网逆变器控制参数自适应调整方法 被引量:1
17
作者 张梦琪 李永刚 +3 位作者 孙庚 吴滨源 刘淇玉 张驰 《电力自动化设备》 EI CSCD 北大核心 2024年第4期111-118,共8页
“双高”电力系统中电网阻抗呈现宽范围时变特性,构网型并网逆变器控制参数缺乏自适应调整能力,存在失稳风险。对此,提出一种基于深度置信网络-极限学习机的构网型并网逆变器控制参数自适应调整方法。建立闭环极点映射模型,利用深层架... “双高”电力系统中电网阻抗呈现宽范围时变特性,构网型并网逆变器控制参数缺乏自适应调整能力,存在失稳风险。对此,提出一种基于深度置信网络-极限学习机的构网型并网逆变器控制参数自适应调整方法。建立闭环极点映射模型,利用深层架构对控制参数与关键极点之间的映射关系进行训练;通过训练好的闭环极点映射模型预测得到相应的关键极点,识别出关键极点最接近参考极点时构网型并网逆变器的控制参数;通过自适应调整控制参数,确保系统在电网阻抗变化时跟踪参考极点,实现自适应稳定控制。理论分析和仿真结果均表明,所提方法能够实现控制参数的自适应调整,有效提高构网型并网逆变器对电网阻抗变化的适应性。 展开更多
关键词 构网型并网逆变器 自适应调整 深度置信网络-极限学习机 复矢量建模 电网阻抗
在线阅读 下载PDF
基于DBN网络的滚动轴承故障诊断 被引量:5
18
作者 刘鹏 皮骏 胡超 《组合机床与自动化加工技术》 北大核心 2024年第1期140-144,共5页
为了提高滚动轴承故障诊断的准确率,提出基于DBN网络的滚动轴承故障诊断方法。针对浅层神经网络难以从振动信号中提取深层故障特征且易陷入维度灾难等技术难点,结合深度置信网络(DBN)能够处理高维非线性数据和有效提取故障特征的特点,... 为了提高滚动轴承故障诊断的准确率,提出基于DBN网络的滚动轴承故障诊断方法。针对浅层神经网络难以从振动信号中提取深层故障特征且易陷入维度灾难等技术难点,结合深度置信网络(DBN)能够处理高维非线性数据和有效提取故障特征的特点,建立基于DBN网络的滚动轴承故障诊断模型。通过验证分析,确定了DBN的隐含层层数、最佳数据类型、激活函数等网络参数,为DBN网络参数的设置提供一种新的方法与思路。并对受限玻尔兹曼机(RBM)的重构能力进行了验证。将DBN网络与BP、ELM、PNN等浅层神经网络进行了对比分析,结果表明DBN网络具有较高的诊断精度与较强的稳定性,证明了DBN网络在滚动轴承故障诊断中的有效性。 展开更多
关键词 深度置信网络 受限玻尔兹曼机 滚动轴承 故障诊断
在线阅读 下载PDF
基于MIC与IAOA-DBN的充油电缆终端故障诊断方法
19
作者 连鸿松 杨静雨 李长云 《高电压技术》 CSCD 北大核心 2024年第12期5259-5268,共10页
高压充油电缆终端的可靠运行是电缆线路稳定运行的前提,但传统充油电缆终端故障诊断模型存在效率低、可靠性差等问题。为准确判断充油电缆终端故障,提出一种最大互信息系数(maximal information coefficient,MIC)结合改进阿基米德算法(i... 高压充油电缆终端的可靠运行是电缆线路稳定运行的前提,但传统充油电缆终端故障诊断模型存在效率低、可靠性差等问题。为准确判断充油电缆终端故障,提出一种最大互信息系数(maximal information coefficient,MIC)结合改进阿基米德算法(improved Archimedes optimization algorithm,IAOA)优化深度置信网络(deep belief network,DBN)的充油电缆终端故障诊断方法。首先,采用MIC理论对电缆终端用硅油中溶解气体浓度的特征量进行降维处理并提取特征量;其次,将优选的特征量作为DBN网络模型的输入,并针对DBN网络超参数选取困难的缺点,提出采用IAOA优化DBN网络模型的超参数;再者,针对AOA算法容易陷入局部最优和搜索能力差等不足,引入多种改进策略优化AOA的方法提高AOA的寻优能力。最后,通过搭建充油电缆终端故障模拟实验平台,收集充油电缆终端故障样本数据并创建类别样本标签,验证了该模型的可行性。实例表明,所提出的诊断方法可以较好地完成故障诊断,测试集的准确率为98.33%。与传统故障诊断模型相比,该方法稳定性好、识别精度高,可为保障高压充油电缆终端的可靠运行提供理论基础。 展开更多
关键词 充油电缆终端 故障诊断 最大互信息系数 改进阿基米德优化算法 深度置信网络
在线阅读 下载PDF
一种基于机器学习的井间水驱优势通道识别方法 被引量:1
20
作者 杨二龙 陈柄君 +2 位作者 董驰 曾傲 张梓彤 《钻采工艺》 北大核心 2025年第1期157-164,共8页
井间优势渗流通道的形成受多方面的因素综合影响,识别过程中需要分析的因素众多、过程复杂,最直观可靠的做法是通过剖面测试数据结合生产动态分析来判定,或者通过措施见效井来验证是否存在优势渗流通道,但是实际生产中剖面测试数据量不... 井间优势渗流通道的形成受多方面的因素综合影响,识别过程中需要分析的因素众多、过程复杂,最直观可靠的做法是通过剖面测试数据结合生产动态分析来判定,或者通过措施见效井来验证是否存在优势渗流通道,但是实际生产中剖面测试数据量不足,措施见效井分析结果又属于后验知识,时效性差,导致识别的精度和效率较低。因此,本文以大庆油田特高含水典型区块M区块为例,结合主控因素分析方法构建特征参数集,应用粒子群算法(PSO)优化深度置信神经网络(DBN)的结构参数,通过逐层递推和全局优化融合、有监督和无监督学习算法融合提升模型性能,形成了一种基于机器学习算法的注采井间优势通道识别的方法。构建的优势通道识别PSO-DBN模型应用于典型区块,识别准确率比未经过优化的DBN神经网络模型预测准确率提高了2.8%,比MLP神经网络模型预测准确率提高了8.6%,通过增补无标注样本、实现有监督和无监督学习算法融合,可以进一步提升识别精度。 展开更多
关键词 特高含水油藏 井间优势通道 深度置信神经网络 算法融合 机器学习
在线阅读 下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部