期刊文献+
共找到9,759篇文章
< 1 2 250 >
每页显示 20 50 100
改进Deep Q Networks的交通信号均衡调度算法
1
作者 贺道坤 《机械设计与制造》 北大核心 2025年第4期135-140,共6页
为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向... 为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向十字路口交通信号模型,并基于此构建交通信号调度优化模型;针对Deep Q Networks算法在交通信号调度问题应用中所存在的收敛性、过估计等不足,对Deep Q Networks进行竞争网络改进、双网络改进以及梯度更新策略改进,提出相适应的均衡调度算法。通过与经典Deep Q Networks仿真比对,验证论文算法对交通信号调度问题的适用性和优越性。基于城市道路数据,分别针对两种场景进行仿真计算,仿真结果表明该算法能够有效缩减十字路口车辆排队长度,均衡各路口车流通行量,缓解高峰出行方向的道路拥堵现象,有利于十字路口交通信号调度效益的提升。 展开更多
关键词 交通信号调度 十字路口 deep Q networks 深度强化学习 智能交通
在线阅读 下载PDF
Deep residual systolic network for massive MIMO channel estimation by joint training strategies of mixed-SNR and mixed-scenarios
2
作者 SUN Meng JING Qingfeng ZHONG Weizhi 《Journal of Systems Engineering and Electronics》 2025年第4期903-913,共11页
The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional ch... The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional channel estimation methods do not always yield reliable estimates. The methodology of this paper consists of deep residual shrinkage network (DRSN)neural network-based method that is used to solve this problem.Thus, the channel estimation approach, based on DRSN with its learning ability of noise-containing data, is first introduced. Then,the DRSN is used to train the noise reduction process based on the results of the least square (LS) channel estimation while applying the pilot frequency subcarriers, where the initially estimated subcarrier channel matrix is considered as a three-dimensional tensor of the DRSN input. Afterward, a mixed signal to noise ratio (SNR) training data strategy is proposed based on the learning ability of DRSN under different SNRs. Moreover, a joint mixed scenario training strategy is carried out to test the multi scenarios robustness of DRSN. As for the findings, the numerical results indicate that the DRSN method outperforms the spatial-frequency-temporal convolutional neural networks (SF-CNN)with similar computational complexity and achieves better advantages in the full SNR range than the minimum mean squared error (MMSE) estimator with a limited dataset. Moreover, the DRSN approach shows robustness in different propagation environments. 展开更多
关键词 massive multiple-input multiple-output(MIMO) channel estimation deep residual shrinkage network(DRSN) deep convolutional neural network(CNN).
在线阅读 下载PDF
基于Deep Q Networks的机械臂推动和抓握协同控制 被引量:3
3
作者 贺道坤 《现代制造工程》 CSCD 北大核心 2021年第7期23-28,共6页
针对目前机械臂在复杂场景应用不足以及推动和抓握自主协同控制研究不多的现状,发挥深度Q网络(Deep Q Networks)无规则、自主学习优势,提出了一种基于Deep Q Networks的机械臂推动和抓握协同控制方法。通过2个完全卷积网络将场景信息映... 针对目前机械臂在复杂场景应用不足以及推动和抓握自主协同控制研究不多的现状,发挥深度Q网络(Deep Q Networks)无规则、自主学习优势,提出了一种基于Deep Q Networks的机械臂推动和抓握协同控制方法。通过2个完全卷积网络将场景信息映射至推动或抓握动作,经过马尔可夫过程,采取目光长远奖励机制,选取最佳行为函数,实现对复杂场景机械臂推动和抓握动作的自主协同控制。在仿真和真实场景实验中,该方法在复杂场景中能够通过推动和抓握自主协同操控实现对物块的快速抓取,并获得更高的动作效率和抓取成功率。 展开更多
关键词 机械臂 抓握 推动 深度Q网络(deep Q networks) 协同控制
在线阅读 下载PDF
Nonlinear inversion for magnetotelluric sounding based on deep belief network 被引量:10
4
作者 WANG He LIU Wei XI Zhen-zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2482-2494,共13页
To improve magnetotelluric(MT)nonlinear inversion accuracy and stability,this work introduces the deep belief network(DBN)algorithm.Firstly,a network frame is set up for training in different 2D MT models.The network ... To improve magnetotelluric(MT)nonlinear inversion accuracy and stability,this work introduces the deep belief network(DBN)algorithm.Firstly,a network frame is set up for training in different 2D MT models.The network inputs are the apparent resistivities of known models,and the outputs are the model parameters.The optimal network structure is achieved by determining the numbers of hidden layers and network nodes.Secondly,the learning process of the DBN is implemented to obtain the optimal solution of network connection weights for known geoelectric models.Finally,the trained DBN is verified through inversion tests,in which the network inputs are the apparent resistivities of unknown models,and the outputs are the corresponding model parameters.The experiment results show that the DBN can make full use of the global searching capability of the restricted Boltzmann machine(RBM)unsupervised learning and the local optimization of the back propagation(BP)neural network supervised learning.Comparing to the traditional neural network inversion,the calculation accuracy and stability of the DBN for MT data inversion are improved significantly.And the tests on synthetic data reveal that this method can be applied to MT data inversion and achieve good results compared with the least-square regularization inversion. 展开更多
关键词 MAGNETOTELLURICS nonlinear inversion deep learning deep belief network
在线阅读 下载PDF
Deep hybrid: Multi-graph neural network collaboration for hyperspectral image classification 被引量:4
5
作者 Ding Yao Zhang Zhi-li +4 位作者 Zhao Xiao-feng Cai Wei He Fang Cai Yao-ming Wei-Wei Cai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期164-176,共13页
With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and th... With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and the application of GNN to hyperspectral images has attracted much attention.However,in the existing GNN-based methods a single graph neural network or graph filter is mainly used to extract HSI features,which does not take full advantage of various graph neural networks(graph filters).Moreover,the traditional GNNs have the problem of oversmoothing.To alleviate these shortcomings,we introduce a deep hybrid multi-graph neural network(DHMG),where two different graph filters,i.e.,the spectral filter and the autoregressive moving average(ARMA)filter,are utilized in two branches.The former can well extract the spectral features of the nodes,and the latter has a good suppression effect on graph noise.The network realizes information interaction between the two branches and takes good advantage of different graph filters.In addition,to address the problem of oversmoothing,a dense network is proposed,where the local graph features are preserved.The dense structure satisfies the needs of different classification targets presenting different features.Finally,we introduce a GraphSAGEbased network to refine the graph features produced by the deep hybrid network.Extensive experiments on three public HSI datasets strongly demonstrate that the DHMG dramatically outperforms the state-ofthe-art models. 展开更多
关键词 Graph neural network Hyperspectral image classification deep hybrid network
在线阅读 下载PDF
Voice activity detection based on deep belief networks using likelihood ratio 被引量:3
6
作者 KIM Sang-Kyun PARK Young-Jin LEE Sangmin 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期145-149,共5页
A novel technique is proposed to improve the performance of voice activity detection(VAD) by using deep belief networks(DBN) with a likelihood ratio(LR). The likelihood ratio is derived from the speech and noise spect... A novel technique is proposed to improve the performance of voice activity detection(VAD) by using deep belief networks(DBN) with a likelihood ratio(LR). The likelihood ratio is derived from the speech and noise spectral components that are assumed to follow the Gaussian probability density function(PDF). The proposed algorithm employs DBN learning in order to classify voice activity by using the input signal to calculate the likelihood ratio. Experiments show that the proposed algorithm yields improved results in various noise environments, compared to the conventional VAD algorithms. Furthermore, the DBN based algorithm decreases the detection probability of error with [0.7, 2.6] compared to the support vector machine based algorithm. 展开更多
关键词 voice activity detection likelihood ratio deep belief networks
在线阅读 下载PDF
Multi-channel electromyography pattern classification using deep belief networks for enhanced user experience 被引量:1
7
作者 SHIM Hyeon-min LEE Sangmin 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1801-1808,共8页
An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-v... An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-varying characteristics.Therefore, in several previous studies, various machine-learning methods have been applied. A DBN is a fast, greedy learning algorithm that can find a fairly good set of weights rapidly, even in deep networks with a large number of parameters and many hidden layers. To evaluate this model, we acquired EMG signals, extracted their features, and then compared the model with the DBN and other conventional classifiers. The accuracy of the DBN is higher than that of the other algorithms. The classification performance of the DBN model designed is approximately 88.60%. It is 7.55%(p=9.82×10-12) higher than linear discriminant analysis(LDA) and 2.89%(p=1.94×10-5) higher than support vector machine(SVM). Further, the DBN is better than shallow learning algorithms or back propagation(BP), and this model is effective for an EMG-based user-interfaced system. 展开更多
关键词 electromyography(EMG) pattern classification feature extraction deep learning deep belief network(DBN)
在线阅读 下载PDF
Underdetermined DOA estimation via multiple time-delay covariance matrices and deep residual network 被引量:4
8
作者 CHEN Ying WANG Xiang HUANG Zhitao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第6期1354-1363,共10页
Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face ... Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases. 展开更多
关键词 direction-of-arrival(DOA)estimation underdetermined condition deep residual network(DRN) time delay covariance matrix
在线阅读 下载PDF
Fast solution to the free return orbit's reachable domain of the manned lunar mission by deep neural network 被引量:2
9
作者 YANG Luyi LI Haiyang +1 位作者 ZHANG Jin ZHU Yuehe 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期495-508,共14页
It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly eval... It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model. 展开更多
关键词 manned lunar mission free return orbit reachable domain(RD) deep neural network computation efficiency
在线阅读 下载PDF
Deep neural network based classification of rolling element bearings and health degradation through comprehensive vibration signal analysis 被引量:1
10
作者 KULEVOME Delanyo Kwame Bensah WANG Hong WANG Xuegang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第1期233-246,共14页
Rolling element bearings are machine components used to allow circular movement and hence deliver forces between components of machines used in diverse areas of industry.The likelihood of failure has the propensity of... Rolling element bearings are machine components used to allow circular movement and hence deliver forces between components of machines used in diverse areas of industry.The likelihood of failure has the propensity of increasing under prolonged operation and varying working conditions.Hence, the accurate fault severity categorization of bearings is vital in diagnosing faults that arise in rotating machinery.The variability and complexity of the recorded vibration signals pose a great hurdle to distinguishing unique characteristic fault features.In this paper, the efficacy and the leverage of a pre-trained convolutional neural network(CNN) is harnessed in the implementation of a robust fault classification model.In the absence of sufficient data, this method has a high-performance rate.Initially, a modified VGG16 architecture is used to extract discriminating features from new samples and serves as input to a classifier.The raw vibration data are strategically segmented and transformed into two representations which are trained separately and jointly.The proposed approach is carried out on bearing vibration data and shows high-performance results.In addition to successfully implementing a robust fault classification model, a prognostic framework is developed by constructing a health indicator(HI) under varying operating conditions for a given fault condition. 展开更多
关键词 bearing failure deep neural network fault classification health indicator prognostics and health management
在线阅读 下载PDF
Self-potential inversion based on Attention U-Net deep learning network
11
作者 GUO You-jun CUI Yi-an +3 位作者 CHEN Hang XIE Jing ZHANG Chi LIU Jian-xin 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3156-3167,共12页
Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention an... Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring. 展开更多
关键词 SELF-POTENTIAL attention mechanism U-Net deep learning network INVERSION landfill
在线阅读 下载PDF
3D laser scanning strategy based on cascaded deep neural network
12
作者 Xiao-bin Xu Ming-hui Zhao +4 位作者 Jian Yang Yi-yang Xiong Feng-lin Pang Zhi-ying Tan Min-zhou Luo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1727-1739,共13页
A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monito... A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monitoring. Combining the device characteristics, the strategy first proposes a cascaded deep neural network, which inputs 2D point cloud, color image and pitching angle. The outputs are target distance and speed classification. And the cross-entropy loss function of network is modified by using focal loss and uniform distribution to improve the recognition accuracy. Then a pitching range and speed model are proposed to determine pitching motion parameters. Finally, the adaptive scanning is realized by integral separate speed PID. The experimental results show that the accuracies of the improved network target detection box, distance and speed classification are 90.17%, 96.87% and 96.97%, respectively. The average speed error of the improved PID is 0.4239°/s, and the average strategy execution time is 0.1521 s.The range and speed model can effectively reduce the collection of useless information and the deformation of the target point cloud. Conclusively, the experimental of overall scanning strategy show that it can improve target point cloud integrity and density while ensuring the capture of target. 展开更多
关键词 Scanning strategy Cascaded deep neural network Improved cross entropy loss function Pitching range and speed model Integral separate speed PID
在线阅读 下载PDF
HR-DeepLabV3+:融合多尺度上下文与注意力机制的道路提取模型
13
作者 马召恒 张雷 +2 位作者 刘如飞 冯飞 王友雷 《山东科技大学学报(自然科学版)》 北大核心 2025年第5期52-63,共12页
城市路网是城市发展的重要基础设施,也是社会经济活动的重要载体。但现有遥感影像路网提取方法在应对高楼阴影、植被遮挡等复杂环境时往往效果不佳。为解决该问题,提出一种HR-DeepLabV3+深度学习模型,主干网络设计采用HRNetV2-W18(high-... 城市路网是城市发展的重要基础设施,也是社会经济活动的重要载体。但现有遥感影像路网提取方法在应对高楼阴影、植被遮挡等复杂环境时往往效果不佳。为解决该问题,提出一种HR-DeepLabV3+深度学习模型,主干网络设计采用HRNetV2-W18(high-resolution network W-18),用于保留高分辨率影像中的细节信息;解码器中设计了多层级融合的空洞空间金字塔结构,并添加多头注意力结构,提升对图像上下文信息的学习能力;损失函数中通过降低背景环境特征信息的权重,更加关注细小的道路目标,从而降低背景复杂环境因素的干扰。在公开数据集CHN6-CUG、DeepGlobe和SJZ Road上进行实验分析表明,该网络的I OU精度分别达0.711、0.685和0.751,相比其他主流网络效果更稳健。 展开更多
关键词 城市路网 遥感识别 深度学习 空间金字塔 路网提取
在线阅读 下载PDF
基于PI-DeepONet算法与稀疏测点数据的两类饱和软土固结行为预测
14
作者 尹掀浪 苏晶晶 +4 位作者 张升 盛岱超 何裕龙 李冉 兰鹏 《铁道科学与工程学报》 北大核心 2025年第10期4542-4552,共11页
为在稀疏测点超孔隙水压力数据条件下预测饱和软土的固结行为,引入物理信息深度算子网络(physics-informed deep operator network,PI-DeepONet)方法,并利用稀疏孔隙水压力测点数据对饱和土体全域内超孔隙水压力分布进行实时预测。通过... 为在稀疏测点超孔隙水压力数据条件下预测饱和软土的固结行为,引入物理信息深度算子网络(physics-informed deep operator network,PI-DeepONet)方法,并利用稀疏孔隙水压力测点数据对饱和土体全域内超孔隙水压力分布进行实时预测。通过分析常规黏土变形固结及软弱黏土大变形固结2个实例进行预测,引入相对L2误差和R2这2个评估指标,验证了PI-DeepONet算法在预测全域超孔隙水压力演化方面的性能,并与纯数据驱动的DeepONet算法的计算结果进行了对比。预测结果表明:在相同的测点数目和各测点拥有相同超孔隙水压力数据量的条件下,DeepONet算法对全域超孔隙水压力的预测绝对误差在10^(-2)~10^(-1)左右,而PI-DeepONet算法的绝对误差范围则在10^(−3)~10^(-2)左右,表现出更好的预测效果。其次,在常规黏土变形固结行为研究中,通过对超孔隙水压力数据添加3种不同噪声水平来模拟现场监测环境,观察到即使噪声水平达到5%,PI-DeepONet算法仍能在水压力数据稀疏且带噪声的条件下提供高质量的全域超孔隙水压力实时预测。最后,在软弱黏土大变形固结行为研究中,将PI-DeepONet算法运用于上下边界排水速率不同的固结问题中,发现训练好的一维模型在单一测点条件下,能对其他界面参数条件下饱和土体全域内超孔隙水压力分布规律进行准确预测,表明PIDeepONet算法能为岩土工程中相关问题提供新的解决办法。 展开更多
关键词 一维固结 稀疏数据 超孔隙水压力 界面参数 物理信息深度算子网络
在线阅读 下载PDF
基于CNN-Informer和DeepLIFT的电力系统频率稳定评估方法
15
作者 张异浩 韩松 荣娜 《电力自动化设备》 北大核心 2025年第7期165-171,共7页
为解决扰动发生后电力系统频率稳定评估精度低且预测时间长的问题,提出了一种电力系统频率稳定评估方法。该方法改进层次时间戳机制,有效捕捉了频率响应在不同时间尺度下的相关性;利用深度学习重要特征技术对输入特征进行筛选,简化了数... 为解决扰动发生后电力系统频率稳定评估精度低且预测时间长的问题,提出了一种电力系统频率稳定评估方法。该方法改进层次时间戳机制,有效捕捉了频率响应在不同时间尺度下的相关性;利用深度学习重要特征技术对输入特征进行筛选,简化了数据维度并提升了模型的训练效率和预测性能;结合卷积神经网络与Informer网络,基于编码器与解码器的协同训练,构建适用于多场景的频率稳定评估框架。以修改后的新英格兰10机39节点系统和WECC 29机179节点系统为算例,仿真结果表明,所提方法在时效性和准确性方面具有显著的优势,并在多种实验条件下展现出良好的鲁棒性和适应性。 展开更多
关键词 电力系统 频率稳定评估 深度学习 时序数据 层次时间戳 蒸馏机制 卷积神经网络
在线阅读 下载PDF
基于PI-DeepONet模型的IGBT模块结温估算方法
16
作者 项江鑫 霍思佳 +2 位作者 乐应波 杨程 崔昊杨 《半导体技术》 北大核心 2025年第7期746-755,共10页
时变高功率工况下,IGBT模块结温的实时准确估算是高效实施热管理策略的基础。但现有方法中,有限元分析(FEA)法难以实时响应,热网络模型法估算准确率低,两者均无法满足结温估算实时性和准确率的均衡性需求。针对这些问题,提出了一种基于... 时变高功率工况下,IGBT模块结温的实时准确估算是高效实施热管理策略的基础。但现有方法中,有限元分析(FEA)法难以实时响应,热网络模型法估算准确率低,两者均无法满足结温估算实时性和准确率的均衡性需求。针对这些问题,提出了一种基于物理约束深度算子网络(PI-DeepONet)模型的IGBT模块结温实时准确估算方法。首先,在算子网络的损失函数中引入物理约束,设计了具有物理约束的PI-DeepONet模型;随后,将FEA计算的IGBT模块热特性参数与时空位置信息作为输入对模型进行训练;最后,利用训练所得的最优算子估算模块结温。仿真结果表明,该模型兼顾了结温估算的准确率和实时性,能够适应复杂工况,为IGBT模块热管理策略的高效实施提供了可靠的理论支持与技术保障。 展开更多
关键词 IGBT 结温估算 物理约束深度算子网络(PI-deepONet)模型 有限元分析(FEA)法 热网络模型 热管理策略
在线阅读 下载PDF
基于改进DeepLabV3+的轻量化语义分割网络
17
作者 惠飞 王悦华 +3 位作者 穆柯楠 徐源 张宇 龙姝静 《计算机工程与设计》 北大核心 2025年第7期1990-1997,共8页
为在硬件资源受限的嵌入式平台中实现高效语义分割,提出一种改进Deep Lab V3+的轻量化语义分割网络。采用Mobile NetV2主干网络并引入深度可分离卷积减少参数,编码器引入SE模块,增强多尺度特征融合,解码器引入CBAM模块,突出特征提取信息... 为在硬件资源受限的嵌入式平台中实现高效语义分割,提出一种改进Deep Lab V3+的轻量化语义分割网络。采用Mobile NetV2主干网络并引入深度可分离卷积减少参数,编码器引入SE模块,增强多尺度特征融合,解码器引入CBAM模块,突出特征提取信息;设计并行与主干网络低级特征的分支,提高目标边缘分割精度;优化损失函数改善正负样本不平衡问题。实验结果表明,改进网络在PASCALVOC数据集上m IoU和m PA分别提高1.54%和2.44%,参数量减少47.84M,改进效果明显。 展开更多
关键词 深度学习 语义分割 轻量化网络 注意力机制 深度可分离卷积 特征提取 损失函数
在线阅读 下载PDF
基于Deep Belief Nets的中文名实体关系抽取 被引量:73
18
作者 陈宇 郑德权 赵铁军 《软件学报》 EI CSCD 北大核心 2012年第10期2572-2585,共14页
关系抽取是信息抽取的一项子任务,用以识别文本中实体之间的语义关系.提出一种利用DBN(deepbelief nets)模型进行基于特征的实体关系抽取方法,该模型是由多层无监督的RBM(restricted Boltzmann machine)网络和一层有监督的BP(back-propa... 关系抽取是信息抽取的一项子任务,用以识别文本中实体之间的语义关系.提出一种利用DBN(deepbelief nets)模型进行基于特征的实体关系抽取方法,该模型是由多层无监督的RBM(restricted Boltzmann machine)网络和一层有监督的BP(back-propagation)网络组成的神经网络分类器.RBM网络以确保特征向量映射达到最优,最后一层BP网络分类RBM网络的输出特征向量,从而训练实体关系分类器.在ACE04语料上进行的相关测试,一方面证明了字特征比词特征更适用于中文关系抽取任务;另一方面设计了3组不同的实验,分别使用正确的实体类别信息、通过实体类型分类器得到实体类型信息和不使用实体类型信息,用以比较实体类型信息对关系抽取效果的影响.实验结果表明,DBN非常适用于基于高维空间特征的信息抽取任务,获得的效果比SVM和反向传播网络更好. 展开更多
关键词 DBN(deep BELIEF nets) 神经网络 关系抽取 深层网络 字特征
在线阅读 下载PDF
面向入侵检测系统的Deep Belief Nets模型 被引量:23
19
作者 高妮 高岭 贺毅岳 《系统工程与电子技术》 EI CSCD 北大核心 2016年第9期2201-2207,共7页
连续的网络流量会导致海量数据问题,这为入侵检测提出了新的挑战。为此,提出一种面向入侵检测系统的深度信念网络(deep belief nets oriented to the intrusion detection system,DBN-IDS)模型。首先,通过无监督的、贪婪的算法自底向上... 连续的网络流量会导致海量数据问题,这为入侵检测提出了新的挑战。为此,提出一种面向入侵检测系统的深度信念网络(deep belief nets oriented to the intrusion detection system,DBN-IDS)模型。首先,通过无监督的、贪婪的算法自底向上逐层训练每一个受限玻尔兹曼机(restricted Boltzmann machine,RBM)网络,使得大量高维、非线性的无标签数据映射为最优的低维表示;然后利用带标签数据被附加到顶层,通过反向传播(back propagation,BP)算法自顶向下有监督地对RBM网络输出的低维表示进行分类,并同时对RBM网络进行微调;最后,利用NSLKDD数据集对模型参数和性能进行了深入的分析。实验结果表明,DBN-IDS分类效果优于支持向量机(support vector machine,SVM)和神经网络(neural network,NN),适用于高维、非线性的海量入侵数据的分类处理。 展开更多
关键词 入侵检测 神经网络 深度信念网络
在线阅读 下载PDF
基于BP神经网络的Deep Web实体识别方法 被引量:5
20
作者 徐红艳 党晓婉 +1 位作者 冯勇 李军平 《计算机应用》 CSCD 北大核心 2013年第3期776-779,共4页
针对现有实体识别方法自动化水平不高、适应性差等不足,提出一种基于反向传播(BP)神经网络的Deep Web实体识别方法。该方法将实体分块后利用反向传播神经网络的自主学习特性,将语义块相似度值作为反向传播神经网络的输入,通过训练得到... 针对现有实体识别方法自动化水平不高、适应性差等不足,提出一种基于反向传播(BP)神经网络的Deep Web实体识别方法。该方法将实体分块后利用反向传播神经网络的自主学习特性,将语义块相似度值作为反向传播神经网络的输入,通过训练得到正确的实体识别模型,从而实现对异构数据源的自动化实体识别。实验结果表明,所提方法的应用不仅能够减少实体识别中的人工干预,而且能够提高实体识别的效率和准确率。 展开更多
关键词 deep WEB 反向传播神经网络 实体识别 相似度 语义块
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部