A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four step...A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.展开更多
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f...In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.展开更多
The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structur...The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure,environmental friendliness,and cost-effectiveness.Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed,emphasizing the critical role of a balanced distribution of micropores,mesopores and macropores in determining electrochemical behavior.Particular attention is given to how the intrinsic components of biomass precursors(lignin,cellulose,and hemicellulose)influence pore formation during carbonization.Carbonization and activation strategies to precisely control the pore structure are introduced.Finally,key challenges in the industrial production of these carbons are outlined,and future research directions are proposed.These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering,aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices.展开更多
In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introduc...In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.展开更多
The design of Web-GIS based intelligent management decision-making system for soybean follows the life cycle standard of software engineering. Based on the analysis of the flow of soybean growth technology, the data f...The design of Web-GIS based intelligent management decision-making system for soybean follows the life cycle standard of software engineering. Based on the analysis of the flow of soybean growth technology, the data flow chart was protracted and the function from chart was brought in the course of the designing and realizing the system. By making use of the directed program tool such as VC, Java and multi-media technique the fimctions of decision-making system were realized. It will do a lot of for the theoretical and practical development of intelligent technology of agricultural information of Heilongjiang Province.展开更多
The 21th century is a "quality century". Facing the s evere challenge about quality, all the developed industry countries attach impor tance to the research and education about quality project. With the deep...The 21th century is a "quality century". Facing the s evere challenge about quality, all the developed industry countries attach impor tance to the research and education about quality project. With the deepening of the reform of China and it’s joining to WTO, many industries and enterprises wi ll be confronted with severe challenge while being offered the opportunity to wa lk up to the world. The arrival of knowledge economy and web time has provided t he space for the innovation on enterprise management. It has also provided new m ethod and model for enterprise management, that is online management based on th e internet. The online management use an enterprise model including the goal of the enterprise and the scheme to carry out it to represent the whole operational of all the work. The online management is constructed on the integration of exp ert system, database, software and other technical models. How to scientifically manage the entire system of product, precisely master the condition of quantity and quality and analyze the rules of the change of produc t quality in order to carry out the overall control of quality, guarantee the go od condition of product as well as improve product quality and prolong it’s se rvice life was discussed in this thesis. Based on the above research the thesis also discussed how to develop the study on product quality information and const ruct it’s decision making support system. The concrete measures to improve peopl e’s concept of quality are also raised. Based on the type analysis, scientific management of product quality information should start from dynamic information of quality, instruction information as we ll as the information about the use, maintain, management and conservation of pr oduct, and induce them and further propose a design scheme of feedback system on product quality information, and then set up the blueprint of the information s ystem of product quality. This thesis included 7 chapters:1.the type of quality information;2.the content of quality information;3.the construction of the se nsitive web for transfering information, and collecting and transfering quality information rapidly and effectively;4.the way and procedure to transfer informa tion;5.the construction of quality information library for all phases; 6.the d isposal of quality information;7.the decision making support system of the mana gement of quality information;8.attach importance to three key factors on impro ving quality concept.展开更多
This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired traje...This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired trajectory. Input the fixed time-varying formation template to the leader and start executing, this process also needs to track the desired trajectory, and the follower needs to converge to the convex hull that the leader crosses. Firstly, the dynamic models of nonholonomic systems are linearized to second-order dynamics. Then, based on the desired trajectory and formation template, the FC control protocols are proposed. Sufficient conditions to achieve FC are introduced and an algorithm is proposed to resolve the control parameters by solving an algebraic Riccati equation. The system is demonstrated to achieve FC, with the average position and velocity of the leaders converging asymptotically to the desired trajectory. Finally, the theoretical achievements are verified in simulations by a multi-agent system composed of virtual human individuals.展开更多
This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise co...This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising dur-ing measurements, thereby enhancing the robustness and stabi-lity of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference sig-nals utilizing local information and communication with neigh-bors. Subsequently, a fixed-time sliding mode controller is intro-duced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve dis-tributed average tracking of reference signals, and rigorous ana-lytical methods are employed to substantiate the fixed-time sta-bility. Finally, numerical simulation results are provided to vali-date the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.展开更多
Model-based system-of-systems(SOS)engineering(MBSoSE)is becoming a promising solution for the design of SoS with increasing complexity.However,bridging the models from the design phase to the simulation phase poses si...Model-based system-of-systems(SOS)engineering(MBSoSE)is becoming a promising solution for the design of SoS with increasing complexity.However,bridging the models from the design phase to the simulation phase poses significant challenges and requires an integrated approach.In this study,a unified requirement modeling approach is proposed based on unified architecture framework(UAF).Theoretical models are proposed which compose formalized descriptions from both topdown and bottom-up perspectives.Based on the description,the UAF profile is proposed to represent the SoS mission and constituent systems(CS)goal.Moreover,the agent-based simulation information is also described based on the overview,design concepts,and details(ODD)protocol as the complement part of the SoS profile,which can be transformed into different simulation platforms based on the eXtensible markup language(XML)technology and model-to-text method.In this way,the design of the SoS is simulated automatically in the early design stage.Finally,the method is implemented and an example is given to illustrate the whole process.展开更多
Implementing an efficient real-time prognostics and health management (PHM) framework improves safety and reduces maintenance costs in complex engineering systems.However, research on PHM framework development for rad...Implementing an efficient real-time prognostics and health management (PHM) framework improves safety and reduces maintenance costs in complex engineering systems.However, research on PHM framework development for radar systems is limited. Furthermore, typical PHM approaches are centralized, do not scale well, and are challenging to implement.This paper proposes an integrated PHM framework for radar systems based on system structural decomposition to enhance reliability and support maintenance actions. The complexity challenge associated with implementing PHM at the system level is addressed by dividing the radar system into subsystems. Subsequently, optimal measurement point selection and sensor placement algorithms are formulated for effective data acquisition. Local modules are developed for each subsystem health assessment, fault diagnosis, and fault prediction without a centralized controller. Maintenance decisions are based on each local module’s fault diagnosis and prediction results. To further improve the effectiveness of the prognostics stage, the feasibility of integrating deep learning (DL) models is also investigated.Several experiments with different degradation patterns are performed to evaluate the effectiveness of the framework’s DLbased prognostics model. The proposed framework facilitates transitioning from traditional reactive maintenance practices to a predictive maintenance approach, thereby reducing downtime and improving the overall availability of radar systems.展开更多
The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy b...The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability.The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by inte-grating accuracy and interpretability into an optimization objec-tive.But the integration has a greater impact on optimization results with strong subjectivity.Thus,a multi-objective optimiza-tion framework in the modeling of BRB systems with inter-pretability-accuracy trade-off is proposed in this paper.Firstly,complexity and accuracy are taken as two independent opti-mization goals,and uniformity as a constraint to give the mathe-matical description.Secondly,a classical multi-objective opti-mization algorithm,nondominated sorting genetic algorithm II(NSGA-II),is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity.Finally,a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization.The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization,and has capability of joint optimiz-ing the structure and parameters of BRB systems with inter-pretability-accuracy trade-off.展开更多
After a brief emphasis about the interconnected world, including Cyber-Physical Systems of Systems, the increasing importance of the decision-making by autonomous, quasi-autonomous, and autonomic systems is emphasised...After a brief emphasis about the interconnected world, including Cyber-Physical Systems of Systems, the increasing importance of the decision-making by autonomous, quasi-autonomous, and autonomic systems is emphasised. Promising roles of computational understanding, computational awareness, and computational wisdom for better autonomous decision-making are outlined. The contributions of simulation-based approaches are listed.展开更多
To evaluate the effectiveness of weapon systems, the advantages and disadvantages of grey relational analysis and TOPSIS for multiattribute decision-making is pointed out, and an effectiveness evaluation model of weap...To evaluate the effectiveness of weapon systems, the advantages and disadvantages of grey relational analysis and TOPSIS for multiattribute decision-making is pointed out, and an effectiveness evaluation model of weapon systems by combining grey relational analysis and TOPSIS is proposed. The model aggregates the grey relational grade and the distance to a new integrated closeness and reflects not only the trend but also the situation of the alternative. The example illuminates that the model is effective for the effectiveness evaluation of weapon systems.展开更多
The weapons system portfolio selection problem arises at the equipment demonstration stage and deals with the military application requirements.Further,the contribution rate of the system is one of the important indic...The weapons system portfolio selection problem arises at the equipment demonstration stage and deals with the military application requirements.Further,the contribution rate of the system is one of the important indicators to evaluate the role of a system,which can facilitate the weapons system portfolio selection.Therefore,combining the system contribution rate with system portfolio selection is the focus of this study.It also focuses on calculating the contribution rates of multiple equipment systems with various types of capabilities.The contribution rate is measured by establishing a hierarchical multi-criteria value model from three dimensions.Based on the value model,the feasible portfolios are developed under certain cost constraints and the optimal weapons system portfolios are obtained by using the classification optimization selection strategy.Finally,an illustrative example is presented to verify the feasibility of the proposed model.展开更多
To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation...To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation weights.The comprehensive attribute weights are gotten through the product of the above three kinds of weights.And each decision maker's weighted decision matrices are also received by using the integrated attribute weights.The closeness degrees are also gotten by use of technique for order preference by similarity to ideal solution(TOPSIS) through dealing with the weighted decision matrices.At the same time the group decision matrix and weighted group decision matrix are gotten by using each decision-maker's closeness degree to every project.Then the vertical TOPSIS method is used to calculate the closeness degree of each project.So these projects can be ranked according to their values of the closeness degree.The process of the method is also given step by step.Finally,a numerical example demonstrates the feasibility and effectiveness of the approach.展开更多
The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear sy...The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.展开更多
Fault prediction technology of running state of electromechanical systems is one of the key technologies that ensure safe and reliable operation of electromechanical equipment in health state. For multiple types of mo...Fault prediction technology of running state of electromechanical systems is one of the key technologies that ensure safe and reliable operation of electromechanical equipment in health state. For multiple types of modern, high-end and key electromechanical equipment, this paper will describe the early faults prediction method for multi-type electromechanical systems, which is favorable for predicting early faults of complex electromechanical systems in non-stationary, nonlinear, variable working conditions and long-time running state; the paper shall introduce the reconfigurable integration technology of series safety monitoring systems based on which the integrated development platform of series safety monitoring systems is built. This platform can adapt to integrated R&D of series safety monitoring systems characterized by high technology, multiple species and low volume. With the help of this platform, series safety monitoring systems were developed, and the Remote Network Security Monitoring Center for Facility Groups was built. Experimental research and engineering applications show that: this new fault prediction method has realized the development trend features extraction of typical electromechanical systems, multi-information fusion, intelligent information decision-making and so on, improving the processing accuracy, relevance and applicability of information; new reconfigurable integration technologies have improved the integration level and R&D efficiency of series safety monitoring systems as well as expanded the scope of application; the series safety monitoring systems developed based on reconfigurable integration platform has already played an important role in many aspects including ensuring safety operation of equipment, stabilizing product quality, optimizing running state, saving energy consumption, reducing environmental pollution, improving working conditions, carrying out scientific maintenance, advancing equipment utilization, saving maintenance charge and enhancing the level of information management.展开更多
According to the aggregation method of experts' evaluation information in group decision-making,the existing methods of determining experts' weights based on cluster analysis take into account the expert's preferen...According to the aggregation method of experts' evaluation information in group decision-making,the existing methods of determining experts' weights based on cluster analysis take into account the expert's preferences and the consistency of expert's collating vectors,but they lack of the measure of information similarity.So it may occur that although the collating vector is similar to the group consensus,information uncertainty is great of a certain expert.However,it is clustered to a larger group and given a high weight.For this,a new aggregation method based on entropy and cluster analysis in group decision-making process is provided,in which the collating vectors are classified with information similarity coefficient,and the experts' weights are determined according to the result of classification,the entropy of collating vectors and the judgment matrix consistency.Finally,a numerical example shows that the method is feasible and effective.展开更多
基金supported by the National Basic Research Program of China (973 Program) (2010CB734104)
文摘A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.
基金Supported by the National Natural Science Foundation of China(11971458,11471310)。
文摘In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.
文摘The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure,environmental friendliness,and cost-effectiveness.Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed,emphasizing the critical role of a balanced distribution of micropores,mesopores and macropores in determining electrochemical behavior.Particular attention is given to how the intrinsic components of biomass precursors(lignin,cellulose,and hemicellulose)influence pore formation during carbonization.Carbonization and activation strategies to precisely control the pore structure are introduced.Finally,key challenges in the industrial production of these carbons are outlined,and future research directions are proposed.These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering,aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices.
基金Supported by the National Natural Science Foundation of China(12061048)NSF of Jiangxi Province(20232BAB201026,20232BAB201018)。
文摘In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.
基金Heilongjiang Province Natural Science Fund Project (F0326)
文摘The design of Web-GIS based intelligent management decision-making system for soybean follows the life cycle standard of software engineering. Based on the analysis of the flow of soybean growth technology, the data flow chart was protracted and the function from chart was brought in the course of the designing and realizing the system. By making use of the directed program tool such as VC, Java and multi-media technique the fimctions of decision-making system were realized. It will do a lot of for the theoretical and practical development of intelligent technology of agricultural information of Heilongjiang Province.
文摘The 21th century is a "quality century". Facing the s evere challenge about quality, all the developed industry countries attach impor tance to the research and education about quality project. With the deepening of the reform of China and it’s joining to WTO, many industries and enterprises wi ll be confronted with severe challenge while being offered the opportunity to wa lk up to the world. The arrival of knowledge economy and web time has provided t he space for the innovation on enterprise management. It has also provided new m ethod and model for enterprise management, that is online management based on th e internet. The online management use an enterprise model including the goal of the enterprise and the scheme to carry out it to represent the whole operational of all the work. The online management is constructed on the integration of exp ert system, database, software and other technical models. How to scientifically manage the entire system of product, precisely master the condition of quantity and quality and analyze the rules of the change of produc t quality in order to carry out the overall control of quality, guarantee the go od condition of product as well as improve product quality and prolong it’s se rvice life was discussed in this thesis. Based on the above research the thesis also discussed how to develop the study on product quality information and const ruct it’s decision making support system. The concrete measures to improve peopl e’s concept of quality are also raised. Based on the type analysis, scientific management of product quality information should start from dynamic information of quality, instruction information as we ll as the information about the use, maintain, management and conservation of pr oduct, and induce them and further propose a design scheme of feedback system on product quality information, and then set up the blueprint of the information s ystem of product quality. This thesis included 7 chapters:1.the type of quality information;2.the content of quality information;3.the construction of the se nsitive web for transfering information, and collecting and transfering quality information rapidly and effectively;4.the way and procedure to transfer informa tion;5.the construction of quality information library for all phases; 6.the d isposal of quality information;7.the decision making support system of the mana gement of quality information;8.attach importance to three key factors on impro ving quality concept.
文摘This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired trajectory. Input the fixed time-varying formation template to the leader and start executing, this process also needs to track the desired trajectory, and the follower needs to converge to the convex hull that the leader crosses. Firstly, the dynamic models of nonholonomic systems are linearized to second-order dynamics. Then, based on the desired trajectory and formation template, the FC control protocols are proposed. Sufficient conditions to achieve FC are introduced and an algorithm is proposed to resolve the control parameters by solving an algebraic Riccati equation. The system is demonstrated to achieve FC, with the average position and velocity of the leaders converging asymptotically to the desired trajectory. Finally, the theoretical achievements are verified in simulations by a multi-agent system composed of virtual human individuals.
基金supported by the National Natural Science Foundation of China(61673130).
文摘This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising dur-ing measurements, thereby enhancing the robustness and stabi-lity of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference sig-nals utilizing local information and communication with neigh-bors. Subsequently, a fixed-time sliding mode controller is intro-duced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve dis-tributed average tracking of reference signals, and rigorous ana-lytical methods are employed to substantiate the fixed-time sta-bility. Finally, numerical simulation results are provided to vali-date the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.
基金Fifth Electronic Research Institute of the Ministry of Industry and Information Technology(HK07202200877)Pre-research Project on Civil Aerospace Technologies of CNSA(D020101)+2 种基金Zhejiang Provincial Science and Technology Plan Project(2022C01052)Frontier Scientific Research Program of Deep Space Exploration Laboratory(2022-QYKYJHHXYF-018,2022-QYKYJH-GCXD-001)Zhiyuan Laboratory(ZYL2024001)。
文摘Model-based system-of-systems(SOS)engineering(MBSoSE)is becoming a promising solution for the design of SoS with increasing complexity.However,bridging the models from the design phase to the simulation phase poses significant challenges and requires an integrated approach.In this study,a unified requirement modeling approach is proposed based on unified architecture framework(UAF).Theoretical models are proposed which compose formalized descriptions from both topdown and bottom-up perspectives.Based on the description,the UAF profile is proposed to represent the SoS mission and constituent systems(CS)goal.Moreover,the agent-based simulation information is also described based on the overview,design concepts,and details(ODD)protocol as the complement part of the SoS profile,which can be transformed into different simulation platforms based on the eXtensible markup language(XML)technology and model-to-text method.In this way,the design of the SoS is simulated automatically in the early design stage.Finally,the method is implemented and an example is given to illustrate the whole process.
基金National Natural Science Foundation of China (42027805)。
文摘Implementing an efficient real-time prognostics and health management (PHM) framework improves safety and reduces maintenance costs in complex engineering systems.However, research on PHM framework development for radar systems is limited. Furthermore, typical PHM approaches are centralized, do not scale well, and are challenging to implement.This paper proposes an integrated PHM framework for radar systems based on system structural decomposition to enhance reliability and support maintenance actions. The complexity challenge associated with implementing PHM at the system level is addressed by dividing the radar system into subsystems. Subsequently, optimal measurement point selection and sensor placement algorithms are formulated for effective data acquisition. Local modules are developed for each subsystem health assessment, fault diagnosis, and fault prediction without a centralized controller. Maintenance decisions are based on each local module’s fault diagnosis and prediction results. To further improve the effectiveness of the prognostics stage, the feasibility of integrating deep learning (DL) models is also investigated.Several experiments with different degradation patterns are performed to evaluate the effectiveness of the framework’s DLbased prognostics model. The proposed framework facilitates transitioning from traditional reactive maintenance practices to a predictive maintenance approach, thereby reducing downtime and improving the overall availability of radar systems.
基金supported by the National Natural Science Foundation of China(71901212)the Science and Technology Innovation Program of Hunan Province(2020RC4046).
文摘The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability.The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by inte-grating accuracy and interpretability into an optimization objec-tive.But the integration has a greater impact on optimization results with strong subjectivity.Thus,a multi-objective optimiza-tion framework in the modeling of BRB systems with inter-pretability-accuracy trade-off is proposed in this paper.Firstly,complexity and accuracy are taken as two independent opti-mization goals,and uniformity as a constraint to give the mathe-matical description.Secondly,a classical multi-objective opti-mization algorithm,nondominated sorting genetic algorithm II(NSGA-II),is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity.Finally,a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization.The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization,and has capability of joint optimiz-ing the structure and parameters of BRB systems with inter-pretability-accuracy trade-off.
文摘After a brief emphasis about the interconnected world, including Cyber-Physical Systems of Systems, the increasing importance of the decision-making by autonomous, quasi-autonomous, and autonomic systems is emphasised. Promising roles of computational understanding, computational awareness, and computational wisdom for better autonomous decision-making are outlined. The contributions of simulation-based approaches are listed.
文摘To evaluate the effectiveness of weapon systems, the advantages and disadvantages of grey relational analysis and TOPSIS for multiattribute decision-making is pointed out, and an effectiveness evaluation model of weapon systems by combining grey relational analysis and TOPSIS is proposed. The model aggregates the grey relational grade and the distance to a new integrated closeness and reflects not only the trend but also the situation of the alternative. The example illuminates that the model is effective for the effectiveness evaluation of weapon systems.
基金supported by the National Key R&D Program of China(2017YFC1405005)the National Natural Science Foundation of China(71690233)
文摘The weapons system portfolio selection problem arises at the equipment demonstration stage and deals with the military application requirements.Further,the contribution rate of the system is one of the important indicators to evaluate the role of a system,which can facilitate the weapons system portfolio selection.Therefore,combining the system contribution rate with system portfolio selection is the focus of this study.It also focuses on calculating the contribution rates of multiple equipment systems with various types of capabilities.The contribution rate is measured by establishing a hierarchical multi-criteria value model from three dimensions.Based on the value model,the feasible portfolios are developed under certain cost constraints and the optimal weapons system portfolios are obtained by using the classification optimization selection strategy.Finally,an illustrative example is presented to verify the feasibility of the proposed model.
基金supported by the Research Innovation Project of Shanghai Education Committee (08YS19)the Excellent Young Teacher Project of Shanghai University
文摘To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation weights.The comprehensive attribute weights are gotten through the product of the above three kinds of weights.And each decision maker's weighted decision matrices are also received by using the integrated attribute weights.The closeness degrees are also gotten by use of technique for order preference by similarity to ideal solution(TOPSIS) through dealing with the weighted decision matrices.At the same time the group decision matrix and weighted group decision matrix are gotten by using each decision-maker's closeness degree to every project.Then the vertical TOPSIS method is used to calculate the closeness degree of each project.So these projects can be ranked according to their values of the closeness degree.The process of the method is also given step by step.Finally,a numerical example demonstrates the feasibility and effectiveness of the approach.
基金supported by the Doctoral Foundation of Qingdao University of Science and Technology(0022330).
文摘The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.
基金Supported by National Natural Science Fund Project(51275052)Key project supported by Beijing Municipal Natural Science Foundation(3131002)Open topic of Key Laboratory of Key Laboratory of Modern Measurement & Control Technology,Ministry of Education(KF20141123202,KF20111123201)
文摘Fault prediction technology of running state of electromechanical systems is one of the key technologies that ensure safe and reliable operation of electromechanical equipment in health state. For multiple types of modern, high-end and key electromechanical equipment, this paper will describe the early faults prediction method for multi-type electromechanical systems, which is favorable for predicting early faults of complex electromechanical systems in non-stationary, nonlinear, variable working conditions and long-time running state; the paper shall introduce the reconfigurable integration technology of series safety monitoring systems based on which the integrated development platform of series safety monitoring systems is built. This platform can adapt to integrated R&D of series safety monitoring systems characterized by high technology, multiple species and low volume. With the help of this platform, series safety monitoring systems were developed, and the Remote Network Security Monitoring Center for Facility Groups was built. Experimental research and engineering applications show that: this new fault prediction method has realized the development trend features extraction of typical electromechanical systems, multi-information fusion, intelligent information decision-making and so on, improving the processing accuracy, relevance and applicability of information; new reconfigurable integration technologies have improved the integration level and R&D efficiency of series safety monitoring systems as well as expanded the scope of application; the series safety monitoring systems developed based on reconfigurable integration platform has already played an important role in many aspects including ensuring safety operation of equipment, stabilizing product quality, optimizing running state, saving energy consumption, reducing environmental pollution, improving working conditions, carrying out scientific maintenance, advancing equipment utilization, saving maintenance charge and enhancing the level of information management.
文摘According to the aggregation method of experts' evaluation information in group decision-making,the existing methods of determining experts' weights based on cluster analysis take into account the expert's preferences and the consistency of expert's collating vectors,but they lack of the measure of information similarity.So it may occur that although the collating vector is similar to the group consensus,information uncertainty is great of a certain expert.However,it is clustered to a larger group and given a high weight.For this,a new aggregation method based on entropy and cluster analysis in group decision-making process is provided,in which the collating vectors are classified with information similarity coefficient,and the experts' weights are determined according to the result of classification,the entropy of collating vectors and the judgment matrix consistency.Finally,a numerical example shows that the method is feasible and effective.