CO2 flooding is regarded as an important method for enhanced oil recovery (EOR) and greenhouse gas control. However, the heterogeneity prevalently dis- tributed in reservoirs inhibits the performance of this technol...CO2 flooding is regarded as an important method for enhanced oil recovery (EOR) and greenhouse gas control. However, the heterogeneity prevalently dis- tributed in reservoirs inhibits the performance of this technology. The sweep efficiency can be significantly reduced especially in the presence of "thief zones". Hence, gas channeling blocking and mobility control are important technical issues for the success of CO2 injection. Normally, crosslinked gels have the potential to block gas channels, but the gelation time control poses challenges to this method. In this study, a new method for selectively blocking CO2 channeling is proposed, which is based on a type of CO2-sensitive gel system (modified polyacry- lamide-methenamine-resorcinol gel system) to form gel in situ. A CO2-sensitive gel system is when gelation or solidification will be triggered by CO2 in the reservoir to block gas channels. The CO2-sensitivity of the gel system was demonstrated in parallel bottle tests of gel in N2 and CO2 atmospheres. Sand pack flow experiments were con- ducted to investigate the shutoff capacity of the gel system under different conditions. The injectivity of the gel system was studied via viscosity measurements. The results indi- cate that this gel system was sensitive to CO2 and had good performance of channeling blocking in porous media. Advantageous viscosity-temperature characteristics were achieved in this work. The effectiveness for EOR in heterogeneous formations based on this gel system was demonstrated using displacement tests conducted in double sand packs. The experimental results can provide guideli- nes for the deployment of theCO2-sensitive gel system for field applications.展开更多
Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in Ind...Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in India. Limited priority is observed at a few intersections, where priorities are perceived by drivers based on geom etry, traffic volume, and speed on the approaches of intersection. Analyzing such intersections is complex because the overall traffic behavior is the result of drivers, vehicles, and traffic flow characteristics. Fuzzy theory has been widely used to analyze similar situations. This paper describes the application of adaptive neurofuzzy interface system (ANFIS) to the modeling of gap acceptance behavior of rightturning vehicles at limited priority Tintersections (in India, vehicles are driven on the left side of a road). Field data are collected using video cameras at four Tintersections having limited priority. The data extracted include gap/lag, subject vehicle type, conflicting vehicle type, and driver's decision (accepted/rejected). ANFIS models are developed by using 80 % of the extracted data (total data observations for major road right turning vehicles are 722 and 1,066 for minor road right turning vehicles) and remaining are used for model vali dation. Four different combinations of input variables are considered for major and minor road right turnings sepa rately. Correct prediction by ANFIS models ranges from 75.17 % to 82.16 % for major road right turning and 87.20 % to 88.62 % for minor road right turning. Themodels developed in this paper can be used in the dynamic estimation of gap acceptance in traffic simulation models.展开更多
Using in situ electric-field-modulated anisotropic magnetoresistance measurement, a large reversible and non- volatile in-plane rotation of magnetic easy axis of -35° between the positive and negative electrical ...Using in situ electric-field-modulated anisotropic magnetoresistance measurement, a large reversible and non- volatile in-plane rotation of magnetic easy axis of -35° between the positive and negative electrical poling states is demonstrated in C040Fe40B20//(001)-cut Pb(Mgl/3Nb2/3)O3-25PbTiO3 (PMN-PT). The specific magneto- electric coupling mechanism therein is experimentally verified to be related to the synchronous in-plane strain rotation induced by 109° ferroelastic domain switching in the (001)-cut PMN-PT substrate.展开更多
According to dimensionless analysis of the coalbed methane (CBM) production data of Fanzhuang block in southern Qinshui basin, the dimensionless gas production rate is calculated to quantitatively divide the CBM wel...According to dimensionless analysis of the coalbed methane (CBM) production data of Fanzhuang block in southern Qinshui basin, the dimensionless gas production rate is calculated to quantitatively divide the CBM well production process into four stages, i.e., drai- nage stage, unstable gas production stage, stable gas pro- duction stage, and gas production decline stage. By the material balance method, the coal reservoir permeability change in different stages is quantitatively characterized. The characteristics and control mechanisms of change in coalbed permeability (CICP) during different production stages are concluded on five aspects, i.e., permeability trend variation, controlling mechanism, system energy, phase state compositions, and production performance. The study reveals that CICP is characterized by first decline, then recovery, and finally by increase and is controlled directly by effective stress and matrix shrinkage effects. Further, the duration and intensity of the matrix shrinkage effect are inherently controlled by adsorption and desorp- tion features.展开更多
Sand production is one of the major problems in sandstone reservoirs. Different mechanical and chemical methods have been proposed to control sand production. In this paper, we propose a chemical method based on using...Sand production is one of the major problems in sandstone reservoirs. Different mechanical and chemical methods have been proposed to control sand production. In this paper, we propose a chemical method based on using polyacrylamide/chromium triacetate hydrogel to investigate sand production in a synthetic sandpack system. To this end, a series of bulk experiments including the bottle test and rheological analysis along with compression tests were conducted. Experimental results indicated that the compressive strength of the sandpack was increased as much as 30 times by injecting 0.5 pore volume of hydrogel. Also, it was found that the increases in cross-linker and polymer concentrations exhibited a positive impact on the compressive strength of the sandpack, mostly by cross-linker concentration(48 psi). Hydrogel with a higher value of cross-linker could retain its viscoelastic properties against the strain which was a maximum of 122% for 0.5 weight ratio of cross-linker/polymer. The presence of salts, in particular divalent cations, has a detrimental effect on the hydrogel stability. The maximum strain value applied on hydrogel in the presence of CaCl_2 was only about 201% as compared to 1010% in the presence of distilled water. Finally, thermogravimetric analysis and its derivative showed that the hydrogel could retain its structure up to 300 °C. The results of this study revealed the potential application of the hydrogel to control sand production.展开更多
Unconsolidated sandstone reservoirs are most susceptible to sand production that leads to a dramatic oil production decline.In this study,the poly(4-vinyl pyridine)(P_(4)VP)incorporated with self-aggregating behavior ...Unconsolidated sandstone reservoirs are most susceptible to sand production that leads to a dramatic oil production decline.In this study,the poly(4-vinyl pyridine)(P_(4)VP)incorporated with self-aggregating behavior was proposed for sand migration control.The P_(4)VP could aggregate sand grains spontaneously throughπ-πstacking interactions to withstand the drag forces sufficiently.The influential factors on the self-aggregating behavior of the P_(4)VP were evaluated by adhesion force test.The adsorption as well as desorption behavior of P_(4)VP on sand grains was characterized by scanning electron microscopy and adhesion force test at different pH conditions.The result indicated that the pH altered the forms of surface silanol groups on sand grains,which in turn affected the adsorption process of P_(4)VP.The spontaneous dimerization of P_(4)VP molecules resulting from theπ-πstacking interaction was demonstrated by reduced density gradient analysis,which contributed to the self-aggregating behavior and the thermally reversible characteristic of the P_(4)VP.Dynamic sand stabilization test revealed that the P_(4)VP showed wide pH and temperature ranges of application.The production of sands can be mitigated effectively at 20-130℃ within the pH range of 4-8.展开更多
Polyacrylamide microspheres have been suc- cessfully used to reduce water production in reservoirs, but it is impossible to distinguish polyacrylamide microspheres from polyacrylamide that is used to enhance oil recov...Polyacrylamide microspheres have been suc- cessfully used to reduce water production in reservoirs, but it is impossible to distinguish polyacrylamide microspheres from polyacrylamide that is used to enhance oil recovery and is already present in production fluids. In order to detect polyacrylamide microspheres in the reservoir pro- duced fluid, fluorescent polyacrylamide microspheres P(AM-BA-AMCO), which fluoresce under ultraviolet irradiation, were synthesized via an inverse suspension polymerization. In order to keep the particle size distribu- tion in a narrow range, the synthesis conditions of the polymerization were studied, including the stirring speed and the concentrations of initiator, NaaCO3, and dispersant. The bonding characteristics of microspheres were deter- mined by Fourier transform infrared spectroscopy. The surface morphology of these microspheres was observed under ultraviolet irradiation with an inverse fluorescence microscope. A laboratory evaluation test showed that the fluorescent polymer microspheres had good water swelling capability, thus they had the ability to plug and migrate in a sand pack. The plugging rate was 99.8 % and the residual resistance coefficient was 800 after microsphere treatment in the sand pack. Furthermore, the fluorescent microspheres and their fragments were accurately detected under ultra- violet irradiation in the produced fluid, even though theyhad experienced extrusion and deformation in the sand pack.展开更多
In this paper, 3D track-keeping control method for autonomous underwater vehicle (AUV) with and without the influence of ocean current is investigated. Because the system to be controlled is highly nonlinear and stron...In this paper, 3D track-keeping control method for autonomous underwater vehicle (AUV) with and without the influence of ocean current is investigated. Because the system to be controlled is highly nonlinear and strong coupled, an approach is used to divide it into two subsystems. One is to control the heading and the track error on the horizontal plane. The other is to control the pitch and the track error on the vertical plane. The results of computer simulation show that the autopilot works properly, it can capture the current waypoint and turns to track the next path automatically.展开更多
This article explores the O(t^(-β))synchronization and asymptotic synchronization for fractional order BAM neural networks(FBAMNNs)with discrete delays,distributed delays and non-identical perturbations.By designing ...This article explores the O(t^(-β))synchronization and asymptotic synchronization for fractional order BAM neural networks(FBAMNNs)with discrete delays,distributed delays and non-identical perturbations.By designing a state feedback control law and a new kind of fractional order Lyapunov functional,a new set of algebraic sufficient conditions are derived to guarantee the O(t^(-β))Synchronization and asymptotic synchronization of the considered FBAMNNs model;this can easily be evaluated without using a MATLAB LMI control toolbox.Finally,two numerical examples,along with the simulation results,illustrate the correctness and viability of the exhibited synchronization results.展开更多
基金financial support from the National Basic Research Program of China(2015CB251201)the Fundamental Research Funds for the Central Universities(15CX06024A)the Program for Changjiang Scholars and Innovative Research Team in University(IRT1294 and IRT1086)
文摘CO2 flooding is regarded as an important method for enhanced oil recovery (EOR) and greenhouse gas control. However, the heterogeneity prevalently dis- tributed in reservoirs inhibits the performance of this technology. The sweep efficiency can be significantly reduced especially in the presence of "thief zones". Hence, gas channeling blocking and mobility control are important technical issues for the success of CO2 injection. Normally, crosslinked gels have the potential to block gas channels, but the gelation time control poses challenges to this method. In this study, a new method for selectively blocking CO2 channeling is proposed, which is based on a type of CO2-sensitive gel system (modified polyacry- lamide-methenamine-resorcinol gel system) to form gel in situ. A CO2-sensitive gel system is when gelation or solidification will be triggered by CO2 in the reservoir to block gas channels. The CO2-sensitivity of the gel system was demonstrated in parallel bottle tests of gel in N2 and CO2 atmospheres. Sand pack flow experiments were con- ducted to investigate the shutoff capacity of the gel system under different conditions. The injectivity of the gel system was studied via viscosity measurements. The results indi- cate that this gel system was sensitive to CO2 and had good performance of channeling blocking in porous media. Advantageous viscosity-temperature characteristics were achieved in this work. The effectiveness for EOR in heterogeneous formations based on this gel system was demonstrated using displacement tests conducted in double sand packs. The experimental results can provide guideli- nes for the deployment of theCO2-sensitive gel system for field applications.
基金partially funded by Department of Science and Technology (DST), Govt. of Indiaproject SR/ FTP/ETA-61/2010
文摘Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in India. Limited priority is observed at a few intersections, where priorities are perceived by drivers based on geom etry, traffic volume, and speed on the approaches of intersection. Analyzing such intersections is complex because the overall traffic behavior is the result of drivers, vehicles, and traffic flow characteristics. Fuzzy theory has been widely used to analyze similar situations. This paper describes the application of adaptive neurofuzzy interface system (ANFIS) to the modeling of gap acceptance behavior of rightturning vehicles at limited priority Tintersections (in India, vehicles are driven on the left side of a road). Field data are collected using video cameras at four Tintersections having limited priority. The data extracted include gap/lag, subject vehicle type, conflicting vehicle type, and driver's decision (accepted/rejected). ANFIS models are developed by using 80 % of the extracted data (total data observations for major road right turning vehicles are 722 and 1,066 for minor road right turning vehicles) and remaining are used for model vali dation. Four different combinations of input variables are considered for major and minor road right turnings sepa rately. Correct prediction by ANFIS models ranges from 75.17 % to 82.16 % for major road right turning and 87.20 % to 88.62 % for minor road right turning. Themodels developed in this paper can be used in the dynamic estimation of gap acceptance in traffic simulation models.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374010 and 11434009the Fundamental Research Funds for the Central Universities
文摘Using in situ electric-field-modulated anisotropic magnetoresistance measurement, a large reversible and non- volatile in-plane rotation of magnetic easy axis of -35° between the positive and negative electrical poling states is demonstrated in C040Fe40B20//(001)-cut Pb(Mgl/3Nb2/3)O3-25PbTiO3 (PMN-PT). The specific magneto- electric coupling mechanism therein is experimentally verified to be related to the synchronous in-plane strain rotation induced by 109° ferroelastic domain switching in the (001)-cut PMN-PT substrate.
基金financial support from the various funding agencies including the Major State Basic Research Development Program of China (973 Program, 2009CB219604)the National Natural Science Foundation of China (41272175)+1 种基金the Key Project of the National Science & Technology (2011ZX05034-001)the China Scholarship Council
文摘According to dimensionless analysis of the coalbed methane (CBM) production data of Fanzhuang block in southern Qinshui basin, the dimensionless gas production rate is calculated to quantitatively divide the CBM well production process into four stages, i.e., drai- nage stage, unstable gas production stage, stable gas pro- duction stage, and gas production decline stage. By the material balance method, the coal reservoir permeability change in different stages is quantitatively characterized. The characteristics and control mechanisms of change in coalbed permeability (CICP) during different production stages are concluded on five aspects, i.e., permeability trend variation, controlling mechanism, system energy, phase state compositions, and production performance. The study reveals that CICP is characterized by first decline, then recovery, and finally by increase and is controlled directly by effective stress and matrix shrinkage effects. Further, the duration and intensity of the matrix shrinkage effect are inherently controlled by adsorption and desorp- tion features.
基金support of the Iran National Science Foundation(INSF)with Project No.of 95849122
文摘Sand production is one of the major problems in sandstone reservoirs. Different mechanical and chemical methods have been proposed to control sand production. In this paper, we propose a chemical method based on using polyacrylamide/chromium triacetate hydrogel to investigate sand production in a synthetic sandpack system. To this end, a series of bulk experiments including the bottle test and rheological analysis along with compression tests were conducted. Experimental results indicated that the compressive strength of the sandpack was increased as much as 30 times by injecting 0.5 pore volume of hydrogel. Also, it was found that the increases in cross-linker and polymer concentrations exhibited a positive impact on the compressive strength of the sandpack, mostly by cross-linker concentration(48 psi). Hydrogel with a higher value of cross-linker could retain its viscoelastic properties against the strain which was a maximum of 122% for 0.5 weight ratio of cross-linker/polymer. The presence of salts, in particular divalent cations, has a detrimental effect on the hydrogel stability. The maximum strain value applied on hydrogel in the presence of CaCl_2 was only about 201% as compared to 1010% in the presence of distilled water. Finally, thermogravimetric analysis and its derivative showed that the hydrogel could retain its structure up to 300 °C. The results of this study revealed the potential application of the hydrogel to control sand production.
基金support from the National Key R&D Program of China(grant number 2018YFA0702400)the Major Scientific and Technological Projects of CNPC(grant number ZD2019-183-007)the China Postdoctoral Science Foundation(grant number 2021M702041)。
文摘Unconsolidated sandstone reservoirs are most susceptible to sand production that leads to a dramatic oil production decline.In this study,the poly(4-vinyl pyridine)(P_(4)VP)incorporated with self-aggregating behavior was proposed for sand migration control.The P_(4)VP could aggregate sand grains spontaneously throughπ-πstacking interactions to withstand the drag forces sufficiently.The influential factors on the self-aggregating behavior of the P_(4)VP were evaluated by adhesion force test.The adsorption as well as desorption behavior of P_(4)VP on sand grains was characterized by scanning electron microscopy and adhesion force test at different pH conditions.The result indicated that the pH altered the forms of surface silanol groups on sand grains,which in turn affected the adsorption process of P_(4)VP.The spontaneous dimerization of P_(4)VP molecules resulting from theπ-πstacking interaction was demonstrated by reduced density gradient analysis,which contributed to the self-aggregating behavior and the thermally reversible characteristic of the P_(4)VP.Dynamic sand stabilization test revealed that the P_(4)VP showed wide pH and temperature ranges of application.The production of sands can be mitigated effectively at 20-130℃ within the pH range of 4-8.
基金supported by the National Natural Science Foundation of China (No.21273286)Doctoral Program Foundation of the Education Ministry (No.20130133110005)
文摘Polyacrylamide microspheres have been suc- cessfully used to reduce water production in reservoirs, but it is impossible to distinguish polyacrylamide microspheres from polyacrylamide that is used to enhance oil recovery and is already present in production fluids. In order to detect polyacrylamide microspheres in the reservoir pro- duced fluid, fluorescent polyacrylamide microspheres P(AM-BA-AMCO), which fluoresce under ultraviolet irradiation, were synthesized via an inverse suspension polymerization. In order to keep the particle size distribu- tion in a narrow range, the synthesis conditions of the polymerization were studied, including the stirring speed and the concentrations of initiator, NaaCO3, and dispersant. The bonding characteristics of microspheres were deter- mined by Fourier transform infrared spectroscopy. The surface morphology of these microspheres was observed under ultraviolet irradiation with an inverse fluorescence microscope. A laboratory evaluation test showed that the fluorescent polymer microspheres had good water swelling capability, thus they had the ability to plug and migrate in a sand pack. The plugging rate was 99.8 % and the residual resistance coefficient was 800 after microsphere treatment in the sand pack. Furthermore, the fluorescent microspheres and their fragments were accurately detected under ultra- violet irradiation in the produced fluid, even though theyhad experienced extrusion and deformation in the sand pack.
文摘In this paper, 3D track-keeping control method for autonomous underwater vehicle (AUV) with and without the influence of ocean current is investigated. Because the system to be controlled is highly nonlinear and strong coupled, an approach is used to divide it into two subsystems. One is to control the heading and the track error on the horizontal plane. The other is to control the pitch and the track error on the vertical plane. The results of computer simulation show that the autopilot works properly, it can capture the current waypoint and turns to track the next path automatically.
基金joint financial support of Thailand Research Fund RSA 6280004,RUSA-Phase 2.0 Grant No.F 24-51/2014-UPolicy(TN Multi-Gen),Dept.of Edn.Govt.of India,UGC-SAP(DRS-I)Grant No.F.510/8/DRS-I/2016(SAP-I)+1 种基金DST(FIST-level I)657876570 Grant No.SR/FIST/MS-I/2018/17Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics(NAMAM)group number RG-DES-2017-01-17。
文摘This article explores the O(t^(-β))synchronization and asymptotic synchronization for fractional order BAM neural networks(FBAMNNs)with discrete delays,distributed delays and non-identical perturbations.By designing a state feedback control law and a new kind of fractional order Lyapunov functional,a new set of algebraic sufficient conditions are derived to guarantee the O(t^(-β))Synchronization and asymptotic synchronization of the considered FBAMNNs model;this can easily be evaluated without using a MATLAB LMI control toolbox.Finally,two numerical examples,along with the simulation results,illustrate the correctness and viability of the exhibited synchronization results.