期刊文献+
共找到16,361篇文章
< 1 2 250 >
每页显示 20 50 100
PM_(2.5) probabilistic forecasting system based on graph generative network with graph U-nets architecture
1
作者 LI Yan-fei YANG Rui +1 位作者 DUAN Zhu LIU Hui 《Journal of Central South University》 2025年第1期304-318,共15页
Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific ... Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific basis for governance and prevention efforts.In this paper,we propose an interval prediction method that considers the spatio-temporal characteristic information of PM_(2.5)signals from multiple stations.K-nearest neighbor(KNN)algorithm interpolates the lost signals in the process of collection,transmission,and storage to ensure the continuity of data.Graph generative network(GGN)is used to process time-series meteorological data with complex structures.The graph U-Nets framework is introduced into the GGN model to enhance its controllability to the graph generation process,which is beneficial to improve the efficiency and robustness of the model.In addition,sparse Bayesian regression is incorporated to improve the dimensional disaster defect of traditional kernel density estimation(KDE)interval prediction.With the support of sparse strategy,sparse Bayesian regression kernel density estimation(SBR-KDE)is very efficient in processing high-dimensional large-scale data.The PM_(2.5)data of spring,summer,autumn,and winter from 34 air quality monitoring sites in Beijing verified the accuracy,generalization,and superiority of the proposed model in interval prediction. 展开更多
关键词 PM_(2.5)interval forecasting graph generative network graph U-nets sparse Bayesian regression kernel density estimation spatial-temporal characteristics
在线阅读 下载PDF
MC-Res2UNet网络在盐体识别中的应用 被引量:1
2
作者 王新 张傲 +1 位作者 张薇 陈同俊 《石油地球物理勘探》 北大核心 2025年第1期21-29,共9页
精确识别埋藏在地表下的盐体对于石油和天然气勘探有重大意义。传统的语义分割算法依然存在对盐体的识别精度较低、边缘识别效果较差、识别效率低等问题。文中提出一种基于MC-Res2UNet网络的盐体识别方法,该网络整体架构由U-Net网络改... 精确识别埋藏在地表下的盐体对于石油和天然气勘探有重大意义。传统的语义分割算法依然存在对盐体的识别精度较低、边缘识别效果较差、识别效率低等问题。文中提出一种基于MC-Res2UNet网络的盐体识别方法,该网络整体架构由U-Net网络改进。首先,使用Res2Net网络作为编码器提取盐体特征信息;然后,在解码层中的卷积之后引入CBAM注意力模块重新分配盐体空间信息和通道信息,抑制不重要的信息;最后,利用多尺度特征融合模块融合空间信息和语义信息,提高盐体识别精度。将文中提出的MC-Res2UNet模型用于TGS盐体数据集进行验证,像素准确率可达到96.6%,交并比可达到86.8%,优于传统的DeepLabV3+、DANet等语义分割方法,对地下盐体有更好的识别效果。 展开更多
关键词 盐体识别 U-net 多尺度特征融合 注意力机制
在线阅读 下载PDF
基于PLP-net轻量化模型的马铃薯捡拾收获中杂质检测方法
3
作者 潘志国 邱保华 +4 位作者 杨然兵 张还 张健 李莹莹 邓志熙 《农业工程学报》 北大核心 2025年第12期208-218,共11页
针对目前马铃薯杂质检测算法存在的运算量高、内存占用大、实时性差等问题,该研究提出了一种基于PLP-net的轻量化检测模型。首先,通过重构骨干网络架构并优化检测头网络,显著降低模型运算量;其次,引入ECA(efficient channel attention)... 针对目前马铃薯杂质检测算法存在的运算量高、内存占用大、实时性差等问题,该研究提出了一种基于PLP-net的轻量化检测模型。首先,通过重构骨干网络架构并优化检测头网络,显著降低模型运算量;其次,引入ECA(efficient channel attention)注意力机制强化关键特征提取能力,并采用Focal-DIoU损失函数(focal and distance-IoU loss)优化边界框回归过程来解决数据集中杂质样本失衡的问题,构建基础模型PL-net。然后,基于模型稀疏化训练结果,精确剪除冗余通道,有效缩减运算量及内存占用,提升模型实时性,后经微调训练后构建PLP-net轻量化模型。为实现工程化应用,该研究采用TensorRT推理部署框架将PLP-net部署至嵌入式设备,并基于PyQt5(Python Qt5 binding)框架开发了可视化交互系统以满足马铃薯杂质检测的生产需求。试验结果表明:与YOLOv8n模型相比,PLP-net在计算效率方面明显提升,浮点运算量降低7.2 G,模型体积压缩2.1 MB,推理速度提升99.4帧/s。使用TensorRT加速和未使用TensorRT加速的PLP-net模型相较于YOLOv8n分别提升18.4帧/s和11.4帧/s。PLP-net模型可为后续马铃薯杂质智能分拣提供技术支撑。 展开更多
关键词 马铃薯杂质 PLP-net 轻量化 模型剪枝 模型部署
在线阅读 下载PDF
基于轻量化U⁃Net的高效地震速度反演方法
4
作者 张岩 王海潮 +3 位作者 姚亮亮 陈柏汉 李新月 孟德聪 《石油地球物理勘探》 北大核心 2025年第4期817-827,共11页
智能地震速度反演是当前地震勘探中的热点、难点,然而复杂的深度学习网络结构对硬件设备的算力要求较高,限制了模型在数据量大和时效性要求高的场景中的应用。为了解决上述问题,根据特征工程和模型轻量化的思想改进了U‑Net,提出适用于GP... 智能地震速度反演是当前地震勘探中的热点、难点,然而复杂的深度学习网络结构对硬件设备的算力要求较高,限制了模型在数据量大和时效性要求高的场景中的应用。为了解决上述问题,根据特征工程和模型轻量化的思想改进了U‑Net,提出适用于GPU的反演网络U‑Net vG和适用于CPU的反演网络U‑Net vC。首先分析速度反演网络的特点,得出卷积神经网络的轻量化原则;然后通过对多尺度模块、注意力门模块及特征提取模块进行轻量化处理得到轻量级速度建模卷积神经网络,在保持预测准确性的同时减小网络体积。数据测试结果表明,该网络训练过程对高性能硬件资源的需求更低,可以实现高效速度反演,具有更高的地震速度反演精度,具有较高的抗噪性。该方法可为解决地震数据反演中的算力瓶颈问题提供新思路。 展开更多
关键词 地震速度反演 深度学习 U‑net 轻量化 特征提取
在线阅读 下载PDF
基于优化的U-net网络掘进工作面煤岩识别方法研究
5
作者 栾恒杰 杨玉晴 +4 位作者 刘建康 蒋宇静 刘建荣 马德良 张孙豪 《采矿与岩层控制工程学报》 北大核心 2025年第1期94-108,共15页
为了提高煤岩识别的精准度,采集了内蒙古上海庙矿业有限责任公司榆树井煤矿掘进工作面煤岩原始图像并制作了深度学习数据集,通过FCN全卷积神经网络(FCN网络)、Unet语义分割网络(U-net网络)与加入Canny边缘检测算法改进后的U-net网络等3... 为了提高煤岩识别的精准度,采集了内蒙古上海庙矿业有限责任公司榆树井煤矿掘进工作面煤岩原始图像并制作了深度学习数据集,通过FCN全卷积神经网络(FCN网络)、Unet语义分割网络(U-net网络)与加入Canny边缘检测算法改进后的U-net网络等3种网络模型对数据集进行训练,并对训练结果进行对比分析。分析结果表明:在训练次数达到100次时,3种网络模型准确率分别为89.25%, 93.52%及94.55%,改进U-net网络模型准确率相较改进前提高1.03%;在煤岩识别方面, U-net网络模型比FCN网络模型取得了更高的准确率,在测试环节中也表现出了更好的性能;在预测环节中,对煤岩边缘部分的识别做到了更为精准的处理。该方法可为煤岩识别的精准度的提高提供参考。 展开更多
关键词 煤岩识别 深度学习 U-net网络 CANNY边缘检测算法
在线阅读 下载PDF
基于多叶位快速叶绿素荧光和1D-DRDC-Net的棉苗盐胁迫诊断方法
6
作者 翁海勇 曾海燕 +3 位作者 雷庆元 周蓓蓓 李佳怿 徐洪烟 《农业机械学报》 北大核心 2025年第3期476-484,493,共10页
盐胁迫会导致棉花纤维品质及产量下降,尤其在苗期时其遭受盐胁迫影响最大。为了实现棉苗盐胁迫的快速诊断,本文利用快速叶绿素荧光技术获取了不同盐胁迫程度下棉苗冠层叶片的OJIP曲线,并结合深度残差网络(Deep residual network,ResNet... 盐胁迫会导致棉花纤维品质及产量下降,尤其在苗期时其遭受盐胁迫影响最大。为了实现棉苗盐胁迫的快速诊断,本文利用快速叶绿素荧光技术获取了不同盐胁迫程度下棉苗冠层叶片的OJIP曲线,并结合深度残差网络(Deep residual network,ResNet)和空洞卷积(Dilated convolution)结构构建了基于“叶位-通道”荧光数据融合的1D-DRDC-Net(1D-deep residual dilated convolutional neural network)棉苗盐胁迫深度学习诊断模型。结果表明,盐胁迫导致棉苗体内含水率下降,丙二醛(Malondialdehyde,MDA)含量、超氧化物歧化酶(Superoxide dismutase,SOD)活性、过氧化物酶(Peroxidase,POD)活性升高;在垂直方向上盐胁迫对棉苗的影响趋势表现为植株上部分叶片各参数变化明显,其中对胁迫最敏感的叶位为L1,而成熟叶片受到的影响相对较小。相比于其它模型,1D-DRDC-Net对棉苗不同胁迫时间下3个盐浓度梯度(0、100、200 mmol/L)的诊断精度为76.67%,F1值为76.48%,比支持向量机(Support vector machine,SVM)、反向传播神经网络(Back propagation neural network,BPNN)准确率均提高5个百分点,比随机森林(Random forest,RF)提高14.45个百分点,比双向长短期记忆网络(Bidirectional long short-term memory,Bi-LSTM)提高3.34个百分点。基于“叶位-通道”的荧光信息融合策略准确率优于仅使用单一敏感叶位荧光信息8.89个百分点,其鲁棒性和泛化能力均优于只采用普通卷积核和取消“跳跃连接”的模型。最终,建立的1D-DRDC-Net模型在棉苗受到胁迫7、14、21 d后,对植株是否受到盐胁迫的诊断准确率分别达到83.33%、88.33%和95.00%,研究结果可为棉花栽培管理提供理论依据。 展开更多
关键词 棉苗盐胁迫 垂直异质性分布 快速叶绿素荧光 1D-DRDC-net
在线阅读 下载PDF
基于U-Net和Transformer结合的不完整多模态脑肿瘤分割方法
7
作者 汤占军 蹇洪 王健 《数据采集与处理》 北大核心 2025年第4期934-949,共16页
由于患者个体差异、采集协议多样性和数据损坏等因素,现有基于磁共振成像(Magnetic resonance imaging,MRI)的脑肿瘤分割方法存在模态数据丢失问题,导致分割精度不高。为此,本文提出了一种基于U-Net和Transformer结合的不完整多模态脑... 由于患者个体差异、采集协议多样性和数据损坏等因素,现有基于磁共振成像(Magnetic resonance imaging,MRI)的脑肿瘤分割方法存在模态数据丢失问题,导致分割精度不高。为此,本文提出了一种基于U-Net和Transformer结合的不完整多模态脑肿瘤分割(Incomplete multimodal brain tumor segmentation based on the combination of U-Net and Transformer,IM TransNet)方法。首先,针对脑肿瘤MRI的4个不同模态设计了单模态特定编码器,提升模型对各模态数据的表征能力。其次,在U-Net中嵌入双重注意力的Transformer模块,克服模态缺失引起的信息不完整问题,减少U-Net的长距离上下文交互和空间依赖性局限。在U-Net的跳跃连接中加入跳跃交叉注意力机制,动态关注不同层级和模态的特征,即使在模态缺失时,也能有效融合特征并进行重建。此外,针对模态缺失引起的训练不平衡问题,设计了辅助解码模块,确保模型在各种不完整模态子集上均能稳定高效地分割脑肿瘤。最后,基于公开数据集BRATS验证模型的性能。实验结果表明,本文提出的模型在增强型肿瘤、肿瘤核心和全肿瘤上的平均Dice评分分别为63.19%、76.42%和86.16%,证明了其在处理不完整多模态数据时的优越性和稳定性,为临床实践中脑肿瘤的准确、高效和可靠分割提供了一种可行的技术手段。 展开更多
关键词 注意力机制 脑肿瘤分割 多模态 U-net TRANSFORMER
在线阅读 下载PDF
基于改进U^(2)-Net的摇床精矿带图像分割方法
8
作者 刘惠中 邹起华 《传感器与微系统》 北大核心 2025年第5期124-128,共5页
为提升选矿摇床的自动化水平,提出一种基于改进U^(2)-Net的摇床精矿带特征提取算法。首先,利用限制对比度自适应直方图均衡化和自适应Gamma校正对图像进行预处理;然后,在U^(2)-Net的基础上,引入注意力(Attention)机制以突出摇床精矿带... 为提升选矿摇床的自动化水平,提出一种基于改进U^(2)-Net的摇床精矿带特征提取算法。首先,利用限制对比度自适应直方图均衡化和自适应Gamma校正对图像进行预处理;然后,在U^(2)-Net的基础上,引入注意力(Attention)机制以突出摇床精矿带形状、边缘等显著特征;同时,使用特征融合模块(FFM)从不同角度提取图像的上下文信息以关注更多的边缘细节信息,并对通道信息赋予了权重以突出显著特征。经实验测试表明改进后的方法优于U^(2)-Net原始算法,平均交并比达到98.29%,平均像素精度达到99.78%,查准率达到98.86%;相比于原始算法,平均交并比提升0.39%,平均像素精度提升0.42%,查准率提升0.54%,取得较好分割效果。 展开更多
关键词 选矿摇床 深度学习 U^(2)-net 注意力机制 特征融合
在线阅读 下载PDF
融合PDE植物时序图像对比学习方法与GCN跳跃连接的U-Net温室甜樱桃图像分割方法
9
作者 胡玲艳 郭睿雅 +6 位作者 郭占俊 徐国辉 盖荣丽 汪祖民 张宇萌 鞠博文 聂晓宇 《智慧农业(中英文)》 2025年第3期131-142,共12页
[目的/意义]在植物表型特征提取中,面临小目标边界难以精确分割、上采样细节恢复空间信息不足等问题。提出一种融合嵌入先验距离(Priori Distance Embedding,PDE)植物时序图像对比学习方法,预训练与图卷积网络(Graph Convolutional Netw... [目的/意义]在植物表型特征提取中,面临小目标边界难以精确分割、上采样细节恢复空间信息不足等问题。提出一种融合嵌入先验距离(Priori Distance Embedding,PDE)植物时序图像对比学习方法,预训练与图卷积网络(Graph Convolutional Networks,GCN)跳跃连接的U-Net温室甜樱桃图像分割方法,借助预训练加速模型收敛,优化特征融合,为图像分割提供技术支持。[方法]将PDE植物时序图像对比学习方法的预训练权重迁移至语义分割任务;Encoder模块通过卷积-池化层执行多尺度特征提取,分层输入图像的语义信息,构建从低层纹理到高层语义的表示;利用Decoder模块进行上采样操作,融合不同尺度特征并恢复图像分辨率;Encoder和Decoder连接处,加入GCN,形成跳跃连接,使网络更容易学习多尺度图像的局部特征。[结果和讨论]从纵向消融实验和横向对比多角度进行试验,并结合准确率、召回率、F1分数等评价指标综合分析,可以验证本研究提出的融合PDE植物时序图像对比学习方法与GCN跳跃连接的U-Net在甜樱桃图像语义分割中的性能表现最佳,准确率可达0.9550。[结论]通过将PDE植物时序图像对比学习方法和GCN技术融合,构建面向植物表型分析的增强型U-Net架构。研究结果表明该方法在复杂场景下能有效解决小目标边界模糊、细节丢失等难题,实现对甜樱桃图像主要器官和背景区域的精确分割,提高原始模型的分割准度,对农业智慧化发展具有重要的实践意义。 展开更多
关键词 嵌入先验距离 迁移学习 图卷积网络 U-net 跳跃连接 植物表型
在线阅读 下载PDF
基于改进U-Net的煤矸图像分割模型与放煤控制技术
10
作者 袁永 秦正寒 +3 位作者 夏永琪 武让 李立宝 李勇 《煤炭学报》 北大核心 2025年第5期2722-2738,共17页
煤矸识别技术是综放工作面实现智能化的关键技术之一,同时也是该领域面临的一个重要挑战。针对目前煤矸图像数据集整体质量差、数据规模小、煤矸图像分割模型检测速度慢、识别精度低等问题,参考实际综放工作面搭建了大尺寸等比例综放开... 煤矸识别技术是综放工作面实现智能化的关键技术之一,同时也是该领域面临的一个重要挑战。针对目前煤矸图像数据集整体质量差、数据规模小、煤矸图像分割模型检测速度慢、识别精度低等问题,参考实际综放工作面搭建了大尺寸等比例综放开采相似模拟平台,基于该平台建立了煤矸图像采集系统,采集构建了高清仿真综放工作面煤矸图像数据集,提出一种基于特征金字塔网络(FPN)和空洞空间金字塔池化(ASPP)的改进U-Net煤矸分割模型,提高了煤矸图像的分割精度。通过在U-Net模型的跳跃连接中添加FPN模块,同时在解码器部分引入ASPP模块,建立了FPN-ASPP-U-Net煤矸分割模型,消融试验验证了FPN模块和ASPP模块对U-Net模型性能的提升。结果表明:FPN-ASPP-U-Net模型分割效果最好,均准确率(M_(A))为97.29%,均F1得分(M_(F1))为97.44%,均交并比(M_(I))为95.65%,模型参数量(M_(P))为29.64 M,浮点运算量(F)为341.29 G,每秒帧数(f)为41.1 f/s,与U-Net模型相比,M_(I)、M_(F1)和M_(A)分别提升了2.64%、1.06%和1.15%,模型参数量仅仅增加了0.33 M,改进后的模型在图像分割速度上有少量提升。设计了FPN-ASPP-U-Net模型与PSPNet、SegFormer、DeepLabV3+、PSANet语义分割模型的图像分割效果对比试验,结果表明:FPN-ASPP-U-Net模型对煤矸图像分割的性能最好,同时模型整体计算参数量最小,在分割精度和分割速度之间有着较好的平衡。对于粉尘影响下的不清晰图像,采用暗通道与高斯加权相结合的方法对图像数据集进行去雾增强,轻度粉尘、中度粉尘、重度粉尘去雾前后的模型对煤的分割精度提高了14.81%、17.79%、23.62%,对矸的分割精度提高了11.73%、14.50%、14.86%。基于研究结论提出了FPN-ASPP-U-Net模型的煤矸图像混矸率计算方法,开展了煤矸图像分割控制放煤试验,以混矸率20%作为放煤口关闭的阈值,单次放煤口开关期间真实混矸率与模型预测混矸率平均误差率为4.71%,验证了基于煤矸图像混矸率对放煤控制的可行性。最后,封装模型代码研发了煤矸图像智能识别软件,设计了煤矸分割现场应用方案,在榆树田煤矿110501综放工作面进行了图像控制放煤试验,验证了该方法能够对煤矸图像进行精准分割,对放煤口开关进行合理控制,提高了综放工作面的智能化水平,为推动煤矿进一步智能化建设提供了有效的技术手段与参考价值。 展开更多
关键词 放顶煤 煤矸识别 图像分割 混矸率 U-net模型
在线阅读 下载PDF
基于EPANET的微灌小区灌水均匀度研究
11
作者 仵峰 黄静 +3 位作者 宰松梅 聂敏敏 刘伟业 高兴杰 《人民黄河》 北大核心 2025年第5期122-128,共7页
为提升规模化微灌管网的灌水质量,基于EPANET模拟软件,以200m×500m为水力计算单元,设计了单因素试验和UL9(33)均匀正交试验,研究了毛管管径、滴头流量和支管首部压力对不同管网灌水均匀度的影响。结果表明:EPANET软件可以较好地模... 为提升规模化微灌管网的灌水质量,基于EPANET模拟软件,以200m×500m为水力计算单元,设计了单因素试验和UL9(33)均匀正交试验,研究了毛管管径、滴头流量和支管首部压力对不同管网灌水均匀度的影响。结果表明:EPANET软件可以较好地模拟微灌小区的水力性能。在树状管网中,增大毛管管径,灌水均匀度略有提升,提升幅度为0.24个百分点,在混合管网中,增大毛管管径,灌水均匀度先显著上升后趋于平缓,提升幅度为6.61个百分点;加大滴头流量,两种管网的灌水均匀度均下降,树状管网和混合管网的下降幅度分别为4.50、3.37个百分点;增加支管首部压力对两种管网灌水均匀度的提升效果均不明显,提升幅度分别为0.19、0.16个百分点。各因素对树状管网灌水均匀度的影响效果由大到小依次为滴头流量、支管首部压力、毛管管径,对混合管网的影响效果由大到小依次为毛管管径、滴头流量、支管首部压力。滴头流量对两种管网的影响效果均显著,毛管管径仅对混合管网影响效果显著,而支管首部压力对两种管网的影响均不显著。在毛管管径、滴头流量、支管首部压力不变的条件下,混合管网的灌水均匀度较树状管网分别提升2.03~8.40、6.95~8.08、7.75~7.72个百分点。采用混合管网、选用合适的滴头流量对保证规模化微灌管网的灌水质量具有重要意义。 展开更多
关键词 规模化微灌管网 毛管管径 滴头流量 支管首部压力 灌水均匀度 EPAnet
在线阅读 下载PDF
基于改进HybridNets的多任务驾驶感知方法 被引量:1
12
作者 武鹏宇 张远辉 刘康 《激光杂志》 CAS 北大核心 2024年第10期80-85,共6页
针对计算资源有限的自动驾驶系统和多任务驾驶感知算法精度低问题,提出了一种改进的HybridNets多任务驾驶感知算法。选择EfficientNetV2-S作为该算法的主干网络,降低参数数量,提高训练速度和识别准确率;结合深度可分离卷积并采用shuffle... 针对计算资源有限的自动驾驶系统和多任务驾驶感知算法精度低问题,提出了一种改进的HybridNets多任务驾驶感知算法。选择EfficientNetV2-S作为该算法的主干网络,降低参数数量,提高训练速度和识别准确率;结合深度可分离卷积并采用shuffle-channel方式卷积降低模型计算量;使用三个独立的解码器来解决不同难度的问题,并在主干网络与Neck端之间加入A2-Nets双重注意力机块,充分提取全局特征。与基础网络HybridNets相比,该模型在车辆检测任务中mAP50可达79.8%,提高了2.6%;可行驶区域分割任务中mIoU可达91.8%,提高了1.2%;车道线检测任务中IoU可达32.55%,提高了0.93%。运行速度达到38 FPS。实验结果表明,与现有方法相比,所提方法的准确率有较大提高。 展开更多
关键词 EfficientnetV2-S A2-nets 目标检测 驾驶区域分割 车道线检测
在线阅读 下载PDF
基于深度学习U-net网络的雾天汽车视觉图像超像素级配准方法
13
作者 靳新 潘月 《激光杂志》 北大核心 2025年第4期121-127,共7页
雾天汽车视觉图像因对比度降低和细节模糊而难以处理与配准。为此,提出基于深度学习U-net网络的超像素级配准方法。首先,通过改进的直方图均衡化算法,增强雾天图像的清晰度和对比度。接着,利用结合了GAN技术的U-Net网络对图像进行初始分... 雾天汽车视觉图像因对比度降低和细节模糊而难以处理与配准。为此,提出基于深度学习U-net网络的超像素级配准方法。首先,通过改进的直方图均衡化算法,增强雾天图像的清晰度和对比度。接着,利用结合了GAN技术的U-Net网络对图像进行初始分割,获取不同区域的标签集。随后,应用SLIC超像素分割算法,将相似像素组合成超像素,形成更具代表性的图像特征。最后,采用改进SURF算法,利用超像素特征进行精确图像对齐,提高配准精度和效率。实验证明,此方法不仅能有效改善雾天汽车视觉图像质量,还具备高配准精度,NCC值稳定在0.92至0.95之间。 展开更多
关键词 直方图均衡化 深度学习GAN-U-net分割网络 SLIC超像素分割 SURF超像素级配准
在线阅读 下载PDF
改进型密集递归残差U-Net的皮肤病变图像分割
14
作者 赵德春 袁杨 +2 位作者 秦璐 韦莉 叶昌荣 《中国生物医学工程学报》 北大核心 2025年第3期291-300,共10页
皮肤病变区域的准确分割对计算机辅助诊断具有重要意义。但皮肤病变图像形状不规则、边界模糊并存在噪声干扰,给皮肤病变区域准确分割造成了困难,极大影响了分割的精度。为此,提出了一种基于改进型密集递归残差U-Net模型(IDR2U-Net),实... 皮肤病变区域的准确分割对计算机辅助诊断具有重要意义。但皮肤病变图像形状不规则、边界模糊并存在噪声干扰,给皮肤病变区域准确分割造成了困难,极大影响了分割的精度。为此,提出了一种基于改进型密集递归残差U-Net模型(IDR2U-Net),实现皮肤病变区域自动分割。首先,将编码层和解码层中的原始卷积块优化为递归残差卷积模块,并且使用密集连接,缓解了梯度消失问题;其次,引入特征自适应模块,通过加强有效特征和抑制无关背景噪声,增强相邻特征之间的融合程度;接着,设计双重注意力机制,其中空间注意力增大全局信息的利用效率,通道注意力用于加强通道特征间的相关性,提升网络对皮肤病变区域分割的准确率,同时采用联合Dice系数与交叉熵的损失函数训练分割网络,解决皮肤镜图像中类别不平衡的问题;最后,采用ISIC 2017皮肤病变数据集中的2000余张图片进行了消融实验和对比实验。实验结果表明,IDR2U-Net模型在Jaccard、Dice系数和准确率上分别达到了78.86%、86.92%和94.61%。改进后的模型不仅提高了精度,还实现了更精细的图像分割,特别是在处理边界模糊图像时,能有效减少欠分割现象。 展开更多
关键词 皮肤病变图像分割 U型网络 密集递归残差卷积模块 特征自适应模块 双重注意力机制
在线阅读 下载PDF
基于NET core的水稻生产机械专业术语双料语言库系统研究
15
作者 李洁 《北方水稻》 2025年第4期159-164,共6页
水稻生产机械化技术正在逐渐走向国际化,而一个支持多语言的语言库系统可以帮助技术更好地传播和应用到不同国家或地区。为实现上述目的,设计基于NET core的水稻生产机械专业术语双料语言库系统。在收集到的水稻生产机械专业术语数据中... 水稻生产机械化技术正在逐渐走向国际化,而一个支持多语言的语言库系统可以帮助技术更好地传播和应用到不同国家或地区。为实现上述目的,设计基于NET core的水稻生产机械专业术语双料语言库系统。在收集到的水稻生产机械专业术语数据中,抽取目标双料语言信息,进而确定其功能性与非功能性需求,实现对水稻生产机械专业术语双料语言信息的传输需求分析。以NET core框架为基础,设计语言库更新模块与整合统计模块,完善水稻生产机械专业术语双料语言库系统的具体设计方法。实验结果表明,基于NET core开发的语言库系统具有更大的存储空间,能够快速实现中英文信息的切换与对照,方便水稻生产机械化技术的国际交流与合作。 展开更多
关键词 net core框架 水稻生产机械 专业术语 双料语言库 传输需求
在线阅读 下载PDF
基于融入注意力机制的改进U-Net鲁棒焊缝识别算法 被引量:1
16
作者 周思羽 刘帅师 +1 位作者 杨宏韬 宋宜虎 《计算机集成制造系统》 北大核心 2025年第1期135-146,共12页
针对复杂焊接环境下大量弧光噪声造成焊缝激光条纹分割精度低的问题,提出一种融入注意力机制的改进U-Net鲁棒焊缝识别算法。首先,在模型的特征融合过程中使用超强通道注意力机制实现特征的加权融合。然后,在编码器结构之后,加入特征分... 针对复杂焊接环境下大量弧光噪声造成焊缝激光条纹分割精度低的问题,提出一种融入注意力机制的改进U-Net鲁棒焊缝识别算法。首先,在模型的特征融合过程中使用超强通道注意力机制实现特征的加权融合。然后,在编码器结构之后,加入特征分类结构,使其可以输出焊缝对应类型名称。最后,由于网络训练中正负样本失衡会对识别结果产生影响,在模型的损失函数中添加Dice Loss和Focal Loss来进行修正,以提高模型的鲁棒性和泛化性。另外,在模型训练的过程中提出了一种像素位置信息和图像种类信息融合的方式,以增强焊缝识别的鲁棒性。实验表明,在具有弧光、烟雾噪声等干扰环境下,所提方法得到了较好的实验结果,能够满足检测对精度和实时性的需求,在具有弧光、烟雾等干扰的实际焊接现场中具有一定的应用前景。 展开更多
关键词 焊缝识别 图像分割 注意力机制 U-net 鲁棒性
在线阅读 下载PDF
基于Densenet模型的步态相位识别研究 被引量:2
17
作者 付明凯 王少红 马超 《电子测量技术》 北大核心 2025年第1期119-128,共10页
步态识别是下肢外骨骼机器人的关键技术,精准地步态识别对下肢外骨骼机器人的柔性控制具有重要作用。为解决不同个体以及同一个体步态特征(步速、步幅等)的随机性,本文提出了一种基于Densenet改进的SECBAM-Densenet网络模型的步态相位... 步态识别是下肢外骨骼机器人的关键技术,精准地步态识别对下肢外骨骼机器人的柔性控制具有重要作用。为解决不同个体以及同一个体步态特征(步速、步幅等)的随机性,本文提出了一种基于Densenet改进的SECBAM-Densenet网络模型的步态相位识别方法。首先,将两个惯性测量单元布置在胫骨前部和大腿前侧的股直肌,采集了200人次受试者前进、转弯、上楼梯、下楼梯4种步态任务的步态数据。然后,对数据进行滤波重采样预处理后作为所提模型的输入。最后,利用SECBAM-Densenet模型得到输出模型的分类结果。结果显示,改进后SECBAM-Densenet模型在同一个体中不同步态相位平均识别准确率达到了95.76%,相比其他模型有0.66%~21.22%的提升。在不同个体中,相位的识别准确率均高于94%。以上试验结果表明,本文提出的模型可以应用于步态相位识别领域,并为下肢外骨骼机器人的柔性控制提供了试验参考。 展开更多
关键词 步态相位 Densenet SE-net注意力模块 空间通道注意力模块
在线阅读 下载PDF
改进UNet++的瓷器文物显微气泡分割 被引量:1
18
作者 刘阳洋 耿国华 +2 位作者 刘鑫达 李展 路正涵 《西北大学学报(自然科学版)》 北大核心 2025年第1期129-138,共10页
对瓷器文物显微气泡的分割,可以更加清晰地观察瓷器表面微观气泡的形态、数量以及分布规律,进而辅助文物专家进行瓷器碎片分类和文物鉴定等工作。但瓷器显微图像中气泡复杂多变,大小及分布不均匀,现有图像分割方法难以适应瓷器显微气泡... 对瓷器文物显微气泡的分割,可以更加清晰地观察瓷器表面微观气泡的形态、数量以及分布规律,进而辅助文物专家进行瓷器碎片分类和文物鉴定等工作。但瓷器显微图像中气泡复杂多变,大小及分布不均匀,现有图像分割方法难以适应瓷器显微气泡特征。因此,该文提出一种基于卷积激活单元的网络AGUNet++,该网络重新设计密集跳跃连接,节点间采用Z字形连接方式,充分提取图像语义特征,防止信息丢失;同时,在卷积单元的密集跳跃连接处,结合注意力门控模块Attention Gate提出卷积激活单元CAU,增强与瓷器文物显微气泡分割任务相关的气泡区域学习,抑制不相关的区域;在训练过程中对每一层子网络的输出采用深度监督和交叉熵损失,有效增强瓷器文物显微气泡特征提取能力,细化分割结果。该方法在SD-saliency-900以及PRMI数据集上的实验结果表明,与经典图像分割网络相比,AGUNet++在MIoU、Precision、Recall和F1分数中均有一定的提升,表现出更好的分割效果。 展开更多
关键词 瓷器文物显微图像 显微图像分割 Unet++ 注意力门
在线阅读 下载PDF
融合U-net网络的纯卷积视频预测模型 被引量:1
19
作者 谢玉枚 蔡远利 +2 位作者 高海燕 关翔锋 唐伟强 《西安交通大学学报》 北大核心 2025年第6期112-121,共10页
为了解决基于深度学习视频预测中存在的时空特征提取不充分以及图像细节保留不足的问题,运用简单视频预测网络模型SimVP给出的Inception单元,提出了一种融合U-net网络的纯卷积视频预测模型(CUnet)。CUnet模型由3个核心模块组成:首先,Cel... 为了解决基于深度学习视频预测中存在的时空特征提取不充分以及图像细节保留不足的问题,运用简单视频预测网络模型SimVP给出的Inception单元,提出了一种融合U-net网络的纯卷积视频预测模型(CUnet)。CUnet模型由3个核心模块组成:首先,Cell模块采用2D卷积层来提取空间特征,并将这些特征输入至多个Inception单元捕获时空特性;其次,DeCell模块通过Inception单元捕获时空特征,并借助2D反卷积层进行上采样操作,恢复图像原始尺寸;最后,引入U-net作为主干网络,将Cell模块和DeCell模块有机整合,有效保留了图像的细节信息,实现了高质量的图像重建。实验结果表明:在TaxiBJ数据集上,与当前表现最佳的时间注意力单元网络模型TAU相比,CUnet模型的预测精度提高了5.23%;在Human3.6M数据集上,与当前表现最佳的快速傅里叶Inception网络模型FFINet相比,CUnet模型的预测精度提高了12.88%。CUnet模型具有优秀的预测能力,可为纯卷积神经网络模型在视频预测领域的应用提供有益探索。 展开更多
关键词 深度学习 视频预测 时空特征 U-net网络 纯卷积神经网络
在线阅读 下载PDF
基于U^(2)-Net和CBAM融合注意力的双模态睡眠分期研究 被引量:1
20
作者 赵倩 李锦 +2 位作者 凤飞龙 强宁 胡静 《陕西师范大学学报(自然科学版)》 北大核心 2025年第1期1-11,共11页
针对当前自动睡眠分期方法存在的难点问题,提出了一种结合U^(2)-Net和CBAM融合注意力对EEG-ECG双模态信号进行自动睡眠分期的方法。首先,采用MIT-BIH公开数据集中的EEG-ECG信号进行预处理;然后,利用添加了多尺度特征提取模块的U^(2)-Ne... 针对当前自动睡眠分期方法存在的难点问题,提出了一种结合U^(2)-Net和CBAM融合注意力对EEG-ECG双模态信号进行自动睡眠分期的方法。首先,采用MIT-BIH公开数据集中的EEG-ECG信号进行预处理;然后,利用添加了多尺度特征提取模块的U^(2)-Net网络并行提取EEG和ECG中的波形特征;其次,利用CBAM融合注意力对全部特征进行权重分配;最后,使用Softmax激活函数对睡眠时期进行六分类。结果表明:基于U^(2)-Net和CBAM融合注意力模型进行睡眠分期时,使用ECG单模态信号的六分类总体准确率为80.2%,F1分数为75.3%;使用EEG单模态信号的六分类总体准确率为85.8%,F1分数为81.7%;使用EEG-ECG双模态信号的六分类总体准确率为90.4%,F1分数为85.6%。提出的双模态睡眠分期模型是可行有效的,并且为自动睡眠分期提供了一种新的思路。 展开更多
关键词 自动睡眠分期 EEG-ECG双模态信号 U^(2)-net网络 CBAM融合注意力
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部