期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
THRFuzzy:Tangential holoentropy-enabled rough fuzzy classifier to classification of evolving data streams 被引量:1
1
作者 Jagannath E.Nalavade T.Senthil Murugan 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1789-1800,共12页
The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is conside... The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is considered a vital process. The data analysis process consists of different tasks, among which the data stream classification approaches face more challenges than the other commonly used techniques. Even though the classification is a continuous process, it requires a design that can adapt the classification model so as to adjust the concept change or the boundary change between the classes. Hence, we design a novel fuzzy classifier known as THRFuzzy to classify new incoming data streams. Rough set theory along with tangential holoentropy function helps in the designing the dynamic classification model. The classification approach uses kernel fuzzy c-means(FCM) clustering for the generation of the rules and tangential holoentropy function to update the membership function. The performance of the proposed THRFuzzy method is verified using three datasets, namely skin segmentation, localization, and breast cancer datasets, and the evaluated metrics, accuracy and time, comparing its performance with HRFuzzy and adaptive k-NN classifiers. The experimental results conclude that THRFuzzy classifier shows better classification results providing a maximum accuracy consuming a minimal time than the existing classifiers. 展开更多
关键词 data stream classification fuzzy rough set tangential holoentropy concept change
在线阅读 下载PDF
Continuous query scheduler based on operators clustering
2
作者 M.Sami Soliman 谭冠政 《Journal of Central South University》 SCIE EI CAS 2011年第3期782-790,共9页
Data stream management system (DSMS) provides convenient solutions to the problem of processing continuous queries on data streams.Previous approaches for scheduling these queries and their operators assume that each ... Data stream management system (DSMS) provides convenient solutions to the problem of processing continuous queries on data streams.Previous approaches for scheduling these queries and their operators assume that each operator runs in separate thread or all operators combine in one query plan and run in a single thread.Both approaches suffer from severe drawbacks concerning the thread overhead and the stalls due to expensive operators.To overcome these drawbacks,a novel approach called clustered operators scheduling (COS) is proposed that adaptively clusters operators of the query plan into a number of groups based on their selectivity and computing cost using S-mean clustering.Experimental evaluation is provided to demonstrate the potential benefits of COS scheduling over the other scheduling strategies.COS can provide adaptive,flexible,reliable,scalable and robust design for continuous query processor. 展开更多
关键词 data stream management systems operators scheduling continuous query CLUSTERING
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部