期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A STUDY OF SOIL CONSERVATION MONITORING INFORMATION SYSTEM BASED ON REMOTELY SENSED DATA FOR A CATCHMENT ON THE LOESS PLATEAU
1
作者 Li Rui, Li Bichen, Ma Xiaoyun (Northwesterng Institute of Soil and Water Conservation, Academia Sinica and Ministry of Water Resources) 《遥感信息》 CSCD 1990年第A02期41-42,共2页
The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq.... The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq. km.) on the Loess Plateau. It sums up Remote sensing (RS), Geographical Information System (GIS) and Expert System (ES) and consists of a integrated system. As a basic level information system of Loess Plateau, its perfection and psreading will bring about a great advance in resources exploitation and management of Loess Plateau. 展开更多
关键词 SCMIS A STUDY OF SOIL CONSERVATION monitoring INFORMATION system BASED ON REMOTELY SENSED data FOR A CATCHMENT ON THE LOESS PLATEAU GIS data
在线阅读 下载PDF
Adaptive Bayesian inversion of pore water pressures based on artificial neural network : An earth dam case study
2
作者 AN Lu CARVAJAL Claudio +4 位作者 DIAS Daniel PEYRAS Laurent JENCK Orianne BREUL Pierre ZHANG Ting-ting 《Journal of Central South University》 CSCD 2024年第11期3930-3947,共18页
Most earth-dam failures are mainly due to seepage,and an accurate assessment of the permeability coefficient provides an indication to avoid a disaster.Parametric uncertainties are encountered in the seepage analysis,... Most earth-dam failures are mainly due to seepage,and an accurate assessment of the permeability coefficient provides an indication to avoid a disaster.Parametric uncertainties are encountered in the seepage analysis,and may be reduced by an inverse procedure that calibrates the simulation results to observations on the real system being simulated.This work proposes an adaptive Bayesian inversion method solved using artificial neural network(ANN)based Markov Chain Monte Carlo simulation.The optimized surrogate model achieves a coefficient of determination at 0.98 by ANN with 247 samples,whereby the computational workload can be greatly reduced.It is also significant to balance the accuracy and efficiency of the ANN model by adaptively updating the sample database.The enrichment samples are obtained from the posterior distribution after iteration,which allows a more accurate and rapid manner to the target posterior.The method was then applied to the hydraulic analysis of an earth dam.After calibrating the global permeability coefficient of the earth dam with the pore water pressure at the downstream unsaturated location,it was validated by the pore water pressure monitoring values at the upstream saturated location.In addition,the uncertainty in the permeability coefficient was reduced,from 0.5 to 0.05.It is shown that the provision of adequate prior information is valuable for improving the efficiency of the Bayesian inversion. 展开更多
关键词 earth dam permeability coefficient pore water pressure monitoring data bayesian inversion artificial neural network
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部