期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
GF-3 data real-time processing method based on multi-satellite distributed data processing system 被引量:7
1
作者 YANG Jun CAO Yan-dong +2 位作者 SUN Guang-cai XING Meng-dao GUO Liang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第3期842-852,共11页
Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process... Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified. 展开更多
关键词 synthetic aperture radar full-track utilization rate distributed data processing CS imaging algorithm field programmable gate array Gaofen-3
在线阅读 下载PDF
Statecharts for Distributed Product Data Management System Modelling
2
作者 K K Leong K M Yu W B Lee 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期260-261,共2页
Product data management (PDM) has been accepted as an important tool for the manufacturing industries. In recent years, more and mor e researches have been conducted in the development of PDM. Their research area s in... Product data management (PDM) has been accepted as an important tool for the manufacturing industries. In recent years, more and mor e researches have been conducted in the development of PDM. Their research area s include system design, integration of object-oriented technology, data distri bution, collaborative and distributed manufacturing working environment, secur ity, and web-based integration. However, there are limitations on their rese arches. In particular, they cannot cater for PDM in distributed manufacturing e nvironment. This is especially true in South China, where many Hong Kong (HK) ma nufacturers have moved their production plants to different locations in Pearl R iver Delta for cost reduction. However, they retain their main offices in HK. Development of PDM system is inherently complex. Product related data cover prod uct name, product part number (product identification), drawings, material speci fications, dimension requirement, quality specification, test result, log size, production schedules, product data version and date of release, special tooling (e.g. jig and fixture), mould design, project engineering in charge, cost spread sheets, while process data includes engineering release, engineering change info rmation management, and other workflow related to the process information. Accor ding to Cornelissen et al., the contemporary PDM system should contains manageme nt functions in structure, retrieval, release, change, and workflow. In system design, development and implementation, a formal specification is nece ssary. However, there is no formal representation model for PDM system. Theref ore a graphical representation model is constructed to express the various scena rios of interactions between users and the PDM system. Statechart is then used to model the operations of PDM system, Fig.1. Statechart model bridges the curr ent gap between requirements, scenarios, and the initial design specifications o f PDM system. After properly analyzing the PDM system, a new distributed PDM (DPDM) system is proposed. Both graphical representation and statechart models are constructed f or the new DPDM system, Fig.2. New product data of DPDM and new system function s are then investigated to support product information flow in the new distribut ed environment. It is found that statecharts allow formal representations to capture the informa tion and control flows of both PDM and DPDM. In particular, statechart offers a dditional expressive power, when compared to conventional state transition diagr am, in terms of hierarchy, concurrency, history, and timing for DPDM behavioral modeling. 展开更多
关键词 DPDM Statecharts for distributed Product data Management System Modelling
在线阅读 下载PDF
Recent Progress of Earth Observation Satellites in China 被引量:1
3
作者 HUANG Shusong QI Wenping +3 位作者 ZHANG Shuai XIA Tian WANG Jingqiao ZENG Yong 《空间科学学报》 CAS CSCD 北大核心 2024年第4期731-740,共10页
Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges... Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges from low to medium to high.The satellites possess the capability to observe across multiple spectral bands,under all weather conditions,and at all times.The data of China Earth observation satellites has been widely used in fields such as natural resource detection,environmental monitoring and protection,disaster prevention and reduction,urban planning and mapping,agricultural and forestry surveys,land survey and geological prospecting,and ocean forecasting,achieving huge social benefits.This article introduces the recent progress of Earth observation satellites in China since 2022,especially the satellite operation,data archiving,data distribution and data coverage. 展开更多
关键词 China Earth Observation Satellites Satellite operation data archiving data distribution data coverage
在线阅读 下载PDF
Automated integration of real-time and non-real-time defense systems 被引量:1
4
作者 Emre Dalkıran Tolga Onel +1 位作者 Okan Topçu Kadir Alpaslan Demir 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期657-670,共14页
Various application domains require the integration of distributed real-time or near-real-time systems with non-real-time systems.Smart cities,smart homes,ambient intelligent systems,or network-centric defense systems... Various application domains require the integration of distributed real-time or near-real-time systems with non-real-time systems.Smart cities,smart homes,ambient intelligent systems,or network-centric defense systems are among these application domains.Data Distribution Service(DDS)is a communication mechanism based on Data-Centric Publish-Subscribe(DCPS)model.It is used for distributed systems with real-time operational constraints.Java Message Service(JMS)is a messaging standard for enterprise systems using Service Oriented Architecture(SOA)for non-real-time operations.JMS allows Java programs to exchange messages in a loosely coupled fashion.JMS also supports sending and receiving messages using a messaging queue and a publish-subscribe interface.In this article,we propose an architecture enabling the automated integration of distributed real-time and non-real-time systems.We test our proposed architecture using a distributed Command,Control,Communications,Computers,and Intelligence(C4I)system.The system has DDS-based real-time Combat Management System components deployed to naval warships,and SOA-based non-real-time Command and Control components used at headquarters.The proposed solution enables the exchange of data between these two systems efficiently.We compare the proposed solution with a similar study.Our solution is superior in terms of automation support,ease of implementation,scalability,and performance. 展开更多
关键词 Systems integration System of systems Systems engineering Software engineering C4I systems Defense systems data distribution service DDS integration Java message service JMS
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部