期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Research on damage characteristics and constitutive model of rock mass under true triaxial cyclic loading based on acoustic emission
1
作者 LI Ying-ming FAN Chao-tao +6 位作者 DONG Chun-liang ZHAO Guang-ming MENG Xiang-rui WANG Xiang-jun SHI Wen-qiu WU Xin-wen GAO Jiang-huai 《Journal of Central South University》 2025年第5期1938-1954,共17页
Aiming at the problem of deep surrounding rock instability induced by roadway excavation or mining disturbance,the true triaxial loading system was used to conduct graded cyclic maximum principal stress σ_(1) and int... Aiming at the problem of deep surrounding rock instability induced by roadway excavation or mining disturbance,the true triaxial loading system was used to conduct graded cyclic maximum principal stress σ_(1) and intermediate principal stress σ_(2) tests on sandstone to simulate the effect of mining stress in actual underground engineering.The influences of each principal stress cycle on the mechanical properties,acoustic emission(AE)characteristics,and fracture characteristics of sandstone were analyzed.The damage characteristics of sandstone under true triaxial cyclic loading were studied.Furthermore,the damage constitutive model of rock mass under true triaxial cyclic loading was established based on AE cumulative ringing count.The quantitative investigation was conducted on cumulative-damage changes in circulating sandstone,which elucidated the mechanism of damage deterioration in sandstone subjected to true triaxial cyclic loading.The results show that the influence of the graded cycleσ_(1) on limit maximum principal strain ɛ_(1max) and limit minimum principal strainɛ_(3max) was significantly greater than that of the limit intermediate principal strain ɛ_(2max).Graded cycleσ_(2) had a greater impact onɛ_(2max) and a smaller impact onɛ_(3max).The elasticity modulus of sandstone decreased exponentially with the increased cyclic load amplitude,while the Poisson ratio increased linearly.b of AE showed a trend of increasing,decreasing,slightly fluctuating,and finally decreasing during cyclingσ_(1).b showed a trend of slight fluctuation,large fluctuation,and finally increase during cyclingσ_(2).Sandstone specimens experienced mainly tensile failure,tensile-shear composite failure,and mainly shear failure with increased initialσ_(2) orσ_(3).This was determined by analyzing the rise angle-average frequency of the AE parameter,corresponding to the rock specimens from splitting failure to shear failure.Besides,the mechanical damage behavior of sandstone under true triaxial cyclic loading could be well described by the established constitutive model.At the same time,it was found that the sandstone damage variable decreased with increasedσ_(2) during cyclingσ_(1).The damage variable decreased first and then increased with increasedσ_(3) during cyclingσ_(2). 展开更多
关键词 rock mechanics true triaxial cyclic principal stress acoustic emission constitutive model damage variable
在线阅读 下载PDF
Mechanical properties and damage evolution of sandstone subjected to uniaxial compression considering freeze-thaw cycles 被引量:1
2
作者 WANG Jing-yao LI Jie-lin +1 位作者 ZHOU Ke-ping LIN Yun 《Journal of Central South University》 CSCD 2024年第11期4137-4154,共18页
The effect of freeze-thaw(F-T)cycles on the mechanical behaviors and internal mechanism of rock mass is a critical research topic.In permafrost or seasonally frozen regions,F-T cycles have adverse effects on the mecha... The effect of freeze-thaw(F-T)cycles on the mechanical behaviors and internal mechanism of rock mass is a critical research topic.In permafrost or seasonally frozen regions,F-T cycles have adverse effects on the mechanical properties of rock mass,leading to many serious disasters in mining and geotechnical operations.In this paper,uniaxial compression tests are carried out on cyan sandstone after different F-T cycles.The failure modes and damage evolution of cyan sandstone under F-T cycles are studied.In addition,from the perspective of fracture and pore volume,the calculation equations of rock strain under frost heaving pressure and F-T cycles are established and verified with the corresponding laboratory tests.Subsequently,based on the classical damage theory,the F-T damage variables of cyan sandstone under different F-T cycles are calculated,and the meso-damage calculation model of cyan sandstone under F-T-loading coupling conditions is derived.Furthermore,through the discrete element numerical simulation software(PFC^(3D)),the microscopic damage evolution process of cyan sandstone under uniaxial compression after F-T cycles is studied,including the change of microcracks number,distribution of microcracks,and the acoustic emission(AE)count.The goal of this study is to investigate the damage evolution mechanism of rock from the mesoscopic and microscopic aspects,which has certain guiding value for accurately understanding the damage characteristics of rock in cold regions. 展开更多
关键词 freeze-thaw cycles cyan sandstone uniaxial compression damage variable PFC^(3D)numerical simulation MICROCRACKS
在线阅读 下载PDF
A damage constitutive model of rock-like materials containing a single crack under the action of chemical corrosion and uniaxial compression 被引量:13
3
作者 PAN Ji-liang CAI Mei-feng +1 位作者 LI Peng GUO Qi-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期486-498,共13页
To describe the deformation and strength characteristics of the corroded rock-like specimens containing a single crack under uniaxial compression,a damage constitutive model combining hydro-chemical damage with coupli... To describe the deformation and strength characteristics of the corroded rock-like specimens containing a single crack under uniaxial compression,a damage constitutive model combining hydro-chemical damage with coupling damage of micro-flaws and macro-cracks is proposed.Firstly,based on phenomenological theory,the damage variable of the rock-like specimens subjected to water environment erosion and chemical corrosion is obtained.Secondly,a coupled damage variable for cracked rock-like specimens is derived based on the Lemaitre strain equivalence hypothesis,which combines the Weibull statistical damage model for micro-flaws and the fracture mechanics model for a macro single crack.Then,considering the residual strength characteristics of the rock-like materials,the damage variable is modified by introducing the correction coefficient,and the damage constitutive model of the corroded rock-like specimens with a single crack under uniaxial compression is established.The model is verified by comparing the experimental stress−strain curves,and the results are in good agreement with those provided in the literature.Finally,the correction coefficient of the damage variable proposed in this paper is discussed.The damage constitutive model developed in this paper provides an effective method to describe the stress−strain relationship and residual strength characteristics of the corroded rock-like specimens with a single crack under uniaxial compression. 展开更多
关键词 rock-like material single-cracked rock damage constitutive model hydro-chemical erosion residual strength damage variable
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部