This study presents a fragility curve to assess explosively induced damage to military vehicle tires based on shock tube experiments.To replicate lateral damage scenarios that may occur in real battlefield environment...This study presents a fragility curve to assess explosively induced damage to military vehicle tires based on shock tube experiments.To replicate lateral damage scenarios that may occur in real battlefield environments involving missile or bomb detonations,extreme overpressure conditions were generated using a shock tube.The influence of explosive charge mass on tire damage was quantitatively evaluated.Experimental results identified two critical failure thresholds:for loss of pressure,the threshold was 354 kPa peak overpressure and 3052 kPa·ms impulse;for rupture,the values were 485 kPa and 4237 kPa-ms,respectively.The same damage profile was reproduced through finite element analysis(FEA),verifying the reliability of the simulation.A Single Degree of Freedom(SDOF)model and Kingery-Bulmash(K-B)chart were employed to generate pressure-impulse data as a function of standoff distance.These data were applied to a finite element tire model using the BLAST ENHANCED keyword in LS-DYNA.The applied peak overpressures were identical to the experimental values with a 24%-27%difference in impulse.The simulation also captured recurring bead rim separation phenomenon,leading to internal pressure loss consistent with high-speed camera observations from the experiments.The resulting fragility curve clearly defines the threshold conditions for tire damage and provides a standardized damage assessment model applicable to various explosive charge masses and stand-off distances.The proposed model offers a quantitative basis for evaluating tire vulnerability,providing foundational reference data for defense applications.Specifically,the findings are expected to serve as a reliable source for weapon effects analysis and target vulnerability assessments involving wheeled military vehicles.展开更多
Aiming at addressing the issues of unclear dynamic response mechanisms and insufficient quantification of temperature coupling effects in building structures under long-duration blast loads,this study investigates typ...Aiming at addressing the issues of unclear dynamic response mechanisms and insufficient quantification of temperature coupling effects in building structures under long-duration blast loads,this study investigates typical composite beam-slab structures through integrated blast shock tube experiments and multiscale numerical simulations using Voronoi-coupled Finite-Discrete Element Method(VoroFDEM).The research systematically reveals the dynamic response mechanisms and damage evolution patterns of composite beam-slab structures subjected to prolonged blast loading.An environmenttemperature-coupled P-I curve damage assessment system is established,and a rapid evaluation method based on image crack characteristics is proposed,achieving innovative transition from traditional mechanical indicators to intelligent recognition paradigms.Results demonstrate that composite beam-slab structures exhibit three-phase failure modes:elastic vibration,plastic hinge formation,and global collapse.Numerical simulations identify the brittle-to-ductile transition temperature threshold at-10℃,and establish a temperature-dependent piecewise function-based P-I curve prediction model,whose overpressure asymptote displays nonlinear temperature sensitivity within-50-30℃.A novel dual-mode evaluation methodology integrating Voro-FDEM numerical simulations with image-based damage feature recognition is developed,enabling quantitative mapping between crack area and destruction levels.These findings provide theoretical foundations and technical pathways for rapid blast damage assessment and protective engineering design.展开更多
Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the ...Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the back-propagation artificial neural network(BP-ANN), which is trained by finite element simulation results. Moreover, the finite element method(FEM) for wing blast damage simulation has been validated by ground explosion tests and further used for damage mode determination and damage characteristics analysis. The analysis results indicate that the wing is more likely to be damaged when the root is struck from vertical directions than others for a small charge. With the increase of TNT equivalent charge, the main damage mode of the wing gradually changes from the local skin tearing to overall structural deformation and the overpressure threshold of wing damage decreases rapidly. Compared to the FEM-based damage assessment, the BP-ANN-based method can predict the wing damage under a random blast wave with an average relative error of 4.78%. The proposed method and conclusions can be used as a reference for damage assessment under blast wave and low-vulnerability design of aircraft structures.展开更多
The research on the damage effectiveness assessment of anti-ship missiles involves system science and weapon science, and has essential strategic research significance. With comprehensive analysis of the specific proc...The research on the damage effectiveness assessment of anti-ship missiles involves system science and weapon science, and has essential strategic research significance. With comprehensive analysis of the specific process of the damage assessment process of anti-missile against ships, a synthetic damage effectiveness assessment process is proposed based on the double hierarchy linguistic term set and the evidence theory. In order to improve the accuracy of the expert ’s assessment information, double hierarchy linguistic terms are used to describe the assessment opinions of experts. In order to avoid the loss of experts ’ original information caused by information fusion rules, the evidence theory is used to fuse the assessment information of various experts on each case. Good stability of the assessment process can be reflected through sensitivity analysis, and the fluctuation of a certain parameter does not have an excessive influence on the assessment results. The assessment process is accurate enough to be reflected through comparative analysis and it has a good advantage in damage effectiveness assessment.展开更多
Since the damages caused by disasters associated with climate anomalies and the diversification of the social structure increase every year, an efficient management system associated with a damage assessment of the ar...Since the damages caused by disasters associated with climate anomalies and the diversification of the social structure increase every year, an efficient management system associated with a damage assessment of the areas vulnerable to disasters is demanded to prevent or mitigate the damages to infrastructure. The areas vulnerable to disasters in Busan, located at southeastern part of Korea, were estimated based on historical records of damages and a risk assessment of the infrastructure was performed to provide fundamental information prior to the establishment of the real-time monitoring system for infrastructure and establish disaster management system. The results are illustrated by using geographical information system(GIS) and provide the importance of the roadmap for comprehensive and specific strategy to manage natural disasters.展开更多
基金part of the Agency for Defense Development(ADD)research project on Weapon lethality/effectiveness analysis technology for material targets and grant funded by the korean goverment(511225-912A03301)。
文摘This study presents a fragility curve to assess explosively induced damage to military vehicle tires based on shock tube experiments.To replicate lateral damage scenarios that may occur in real battlefield environments involving missile or bomb detonations,extreme overpressure conditions were generated using a shock tube.The influence of explosive charge mass on tire damage was quantitatively evaluated.Experimental results identified two critical failure thresholds:for loss of pressure,the threshold was 354 kPa peak overpressure and 3052 kPa·ms impulse;for rupture,the values were 485 kPa and 4237 kPa-ms,respectively.The same damage profile was reproduced through finite element analysis(FEA),verifying the reliability of the simulation.A Single Degree of Freedom(SDOF)model and Kingery-Bulmash(K-B)chart were employed to generate pressure-impulse data as a function of standoff distance.These data were applied to a finite element tire model using the BLAST ENHANCED keyword in LS-DYNA.The applied peak overpressures were identical to the experimental values with a 24%-27%difference in impulse.The simulation also captured recurring bead rim separation phenomenon,leading to internal pressure loss consistent with high-speed camera observations from the experiments.The resulting fragility curve clearly defines the threshold conditions for tire damage and provides a standardized damage assessment model applicable to various explosive charge masses and stand-off distances.The proposed model offers a quantitative basis for evaluating tire vulnerability,providing foundational reference data for defense applications.Specifically,the findings are expected to serve as a reliable source for weapon effects analysis and target vulnerability assessments involving wheeled military vehicles.
基金supported by Open Research Fund of State Key Laboratory of Target Vulnerability Assessment,Defense Engineering Institute,AMS,PLA(Grant No.YSX2024KFPG002)。
文摘Aiming at addressing the issues of unclear dynamic response mechanisms and insufficient quantification of temperature coupling effects in building structures under long-duration blast loads,this study investigates typical composite beam-slab structures through integrated blast shock tube experiments and multiscale numerical simulations using Voronoi-coupled Finite-Discrete Element Method(VoroFDEM).The research systematically reveals the dynamic response mechanisms and damage evolution patterns of composite beam-slab structures subjected to prolonged blast loading.An environmenttemperature-coupled P-I curve damage assessment system is established,and a rapid evaluation method based on image crack characteristics is proposed,achieving innovative transition from traditional mechanical indicators to intelligent recognition paradigms.Results demonstrate that composite beam-slab structures exhibit three-phase failure modes:elastic vibration,plastic hinge formation,and global collapse.Numerical simulations identify the brittle-to-ductile transition temperature threshold at-10℃,and establish a temperature-dependent piecewise function-based P-I curve prediction model,whose overpressure asymptote displays nonlinear temperature sensitivity within-50-30℃.A novel dual-mode evaluation methodology integrating Voro-FDEM numerical simulations with image-based damage feature recognition is developed,enabling quantitative mapping between crack area and destruction levels.These findings provide theoretical foundations and technical pathways for rapid blast damage assessment and protective engineering design.
基金supported by the Natural Science Foundation of Shaanxi Province (Grant No. 2020JQ-122)the Fund support of Science and Technology on Transient Impact Laboratory。
文摘Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the back-propagation artificial neural network(BP-ANN), which is trained by finite element simulation results. Moreover, the finite element method(FEM) for wing blast damage simulation has been validated by ground explosion tests and further used for damage mode determination and damage characteristics analysis. The analysis results indicate that the wing is more likely to be damaged when the root is struck from vertical directions than others for a small charge. With the increase of TNT equivalent charge, the main damage mode of the wing gradually changes from the local skin tearing to overall structural deformation and the overpressure threshold of wing damage decreases rapidly. Compared to the FEM-based damage assessment, the BP-ANN-based method can predict the wing damage under a random blast wave with an average relative error of 4.78%. The proposed method and conclusions can be used as a reference for damage assessment under blast wave and low-vulnerability design of aircraft structures.
文摘The research on the damage effectiveness assessment of anti-ship missiles involves system science and weapon science, and has essential strategic research significance. With comprehensive analysis of the specific process of the damage assessment process of anti-missile against ships, a synthetic damage effectiveness assessment process is proposed based on the double hierarchy linguistic term set and the evidence theory. In order to improve the accuracy of the expert ’s assessment information, double hierarchy linguistic terms are used to describe the assessment opinions of experts. In order to avoid the loss of experts ’ original information caused by information fusion rules, the evidence theory is used to fuse the assessment information of various experts on each case. Good stability of the assessment process can be reflected through sensitivity analysis, and the fluctuation of a certain parameter does not have an excessive influence on the assessment results. The assessment process is accurate enough to be reflected through comparative analysis and it has a good advantage in damage effectiveness assessment.
基金Project supported by the 2013 Inje University Research Grant of Korea
文摘Since the damages caused by disasters associated with climate anomalies and the diversification of the social structure increase every year, an efficient management system associated with a damage assessment of the areas vulnerable to disasters is demanded to prevent or mitigate the damages to infrastructure. The areas vulnerable to disasters in Busan, located at southeastern part of Korea, were estimated based on historical records of damages and a risk assessment of the infrastructure was performed to provide fundamental information prior to the establishment of the real-time monitoring system for infrastructure and establish disaster management system. The results are illustrated by using geographical information system(GIS) and provide the importance of the roadmap for comprehensive and specific strategy to manage natural disasters.