Photocatalytic CO_(2)cycloaddition reaction presents a promising CO_(2)conversion strategy to establish carbon neutrality.Among emerging catalysts,metal‑organic frameworks(MOFs)have been regarded as paradigmshifting p...Photocatalytic CO_(2)cycloaddition reaction presents a promising CO_(2)conversion strategy to establish carbon neutrality.Among emerging catalysts,metal‑organic frameworks(MOFs)have been regarded as paradigmshifting photocatalysts for their atomic precision in active site engineering,controllable porosity,and exceptional photochemical stability under ambient conditions.However,inherent limitations persist in conventional MOFs,including restricted solar spectrum utilization,inefficient charge carrier separation,and inadequate epoxide activation ability.Recent breakthroughs address these challenges through multiple strategies:ligand engineering,dopant incorporation,and composite construction.This review systematically maps the evolutionary trajectory of MOF‑based photocatalysts,providing mechanistic insights into structure‑activity relationships and providing insights and directions for the design of high‑performance MOF‑based photocatalysts.展开更多
文摘Photocatalytic CO_(2)cycloaddition reaction presents a promising CO_(2)conversion strategy to establish carbon neutrality.Among emerging catalysts,metal‑organic frameworks(MOFs)have been regarded as paradigmshifting photocatalysts for their atomic precision in active site engineering,controllable porosity,and exceptional photochemical stability under ambient conditions.However,inherent limitations persist in conventional MOFs,including restricted solar spectrum utilization,inefficient charge carrier separation,and inadequate epoxide activation ability.Recent breakthroughs address these challenges through multiple strategies:ligand engineering,dopant incorporation,and composite construction.This review systematically maps the evolutionary trajectory of MOF‑based photocatalysts,providing mechanistic insights into structure‑activity relationships and providing insights and directions for the design of high‑performance MOF‑based photocatalysts.