The memory behavior in liquid crystals(LCs)that is characterized by low cost,large area,high speed,and high-density memory has evolved from a mere scientific curiosity to a technology that is being applied in a variet...The memory behavior in liquid crystals(LCs)that is characterized by low cost,large area,high speed,and high-density memory has evolved from a mere scientific curiosity to a technology that is being applied in a variety of commodities.In this study,we utilized molybdenum disulfide(MoS_(2))nanoflakes as the guest in a homotropic LCs host to modulate the overall memory effect of the hybrid.It was found that the MoS₂nanoflakes within the LCs host formed agglomerates,which in turn resulted in an accelerated response of the hybrids to the external electric field.However,this process also resulted in a slight decrease in the threshold voltage.Additionally,it was observed that MoS₂nanoflakes in a LCs host tend to align homeotropically under an external electric field,thereby accelerating the refreshment of the memory behavior.The incorporation of a mass fraction of 0.1%2μm MoS₂nanoflakes into the LCs host was found to significantly reduce the refreshing memory behavior in the hybrid to 94.0 s under an external voltage of 5 V.These findings illustrate the efficacy of regulating the rate of memory behavior for a variety of potential applications.展开更多
Two Gd_(2)complexes,namely[Gd_(2)(dbm)_(2)(HL_(1))_(2)(CH_(3)OH)_(2)]·4CH_(3)OH(1)and[Gd_(2)(dbm)_(2)(L_(2))_(2)(CH_(3)OH)_(2)]·2CH_(3)OH(2),where H_(3)L_(1)=(Z)-N'-[4-(diethylamino)-2-hydroxybenzylidene...Two Gd_(2)complexes,namely[Gd_(2)(dbm)_(2)(HL_(1))_(2)(CH_(3)OH)_(2)]·4CH_(3)OH(1)and[Gd_(2)(dbm)_(2)(L_(2))_(2)(CH_(3)OH)_(2)]·2CH_(3)OH(2),where H_(3)L_(1)=(Z)-N'-[4-(diethylamino)-2-hydroxybenzylidene]-2-hydroxyacetohydrazide,H_(2)L_(2)=(E)-N'-(5-bromo-2-hydroxy-3-methoxybenzylidene)nicotinohydrazide,Hdbm=dibenzoylmethane,have been constructed by adopting the solvothermal method.Structural characterization unveils that both complexes 1 and 2 are constituted by two Gd^(3+)ions,two dbm-ions,two CH_(3)OH molecules,and two polydentate Schiff-base ligands(HL_(1)^(2-)or L_(2)^(2-)).In addition,complex 1 contains four free methanol molecules,whereas complex 2 harbors two free methanol molecules.By investigating the interactions between complexes 1 and 2 and four types of bacteria(Bacillus subtilis,Escherichia coli,Staphylococcus aureus,Candida albicans),it was found that both complexes 1 and 2 exhibited potent antibacte-rial activities.The interaction mechanisms between the ligands H_(3)L_(1),H_(2)L_(2),complexes 1 and 2,and calf thymus DNA(CT-DNA)were studied using ultraviolet-visible spectroscopy,fluorescence titration,and cyclic voltammetry.The results demonstrated that both complexes 1 and 2 can intercalate into CT-DNA molecules,thereby inhibiting bacterial proliferation to achieve the antibacterial effects.CCDC:2401116,1;2401117,2.展开更多
Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by...Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by varying the calcination temperature of anatase-TiO_(2).Structural characterizations revealed that a distinct TiO_(x) coating on the Ni nanoparticles(NPs)was evident for Ni/TiO_(2)-700 catalyst due to strong metal-support interaction.It is observed that the TiOx overlayer gradually disappeared as the ratio of rutile/anatase increased,thereby enhancing the exposure of Ni active sites.The exposed Ni sites enhanced visible light absorption and boosted the dissociation capability of CH4,which led to the much elevated catalytic activity for Ni/TiO_(2)-950 in which rutile dominated.Therefore,the catalytic activity of solar-driven DRM reaction was significantly influenced by the rutile/anatase ratio.Ni/TiO_(2)-950,characterized by a predominant rutile phase,exhibited the highest DRM reactivity,with remarkable H_(2) and CO production rates reaching as high as 87.4 and 220.2 mmol/(g·h),respectively.These rates were approximately 257 and 130 times higher,respectively,compared to those obtained on Ni/TiO_(2)-700 with anatase.This study suggests that the optimization of crystal structure of TiO_(2) support can effectively enhance the performance of photothermal DRM reaction.展开更多
文摘The memory behavior in liquid crystals(LCs)that is characterized by low cost,large area,high speed,and high-density memory has evolved from a mere scientific curiosity to a technology that is being applied in a variety of commodities.In this study,we utilized molybdenum disulfide(MoS_(2))nanoflakes as the guest in a homotropic LCs host to modulate the overall memory effect of the hybrid.It was found that the MoS₂nanoflakes within the LCs host formed agglomerates,which in turn resulted in an accelerated response of the hybrids to the external electric field.However,this process also resulted in a slight decrease in the threshold voltage.Additionally,it was observed that MoS₂nanoflakes in a LCs host tend to align homeotropically under an external electric field,thereby accelerating the refreshment of the memory behavior.The incorporation of a mass fraction of 0.1%2μm MoS₂nanoflakes into the LCs host was found to significantly reduce the refreshing memory behavior in the hybrid to 94.0 s under an external voltage of 5 V.These findings illustrate the efficacy of regulating the rate of memory behavior for a variety of potential applications.
文摘Two Gd_(2)complexes,namely[Gd_(2)(dbm)_(2)(HL_(1))_(2)(CH_(3)OH)_(2)]·4CH_(3)OH(1)and[Gd_(2)(dbm)_(2)(L_(2))_(2)(CH_(3)OH)_(2)]·2CH_(3)OH(2),where H_(3)L_(1)=(Z)-N'-[4-(diethylamino)-2-hydroxybenzylidene]-2-hydroxyacetohydrazide,H_(2)L_(2)=(E)-N'-(5-bromo-2-hydroxy-3-methoxybenzylidene)nicotinohydrazide,Hdbm=dibenzoylmethane,have been constructed by adopting the solvothermal method.Structural characterization unveils that both complexes 1 and 2 are constituted by two Gd^(3+)ions,two dbm-ions,two CH_(3)OH molecules,and two polydentate Schiff-base ligands(HL_(1)^(2-)or L_(2)^(2-)).In addition,complex 1 contains four free methanol molecules,whereas complex 2 harbors two free methanol molecules.By investigating the interactions between complexes 1 and 2 and four types of bacteria(Bacillus subtilis,Escherichia coli,Staphylococcus aureus,Candida albicans),it was found that both complexes 1 and 2 exhibited potent antibacte-rial activities.The interaction mechanisms between the ligands H_(3)L_(1),H_(2)L_(2),complexes 1 and 2,and calf thymus DNA(CT-DNA)were studied using ultraviolet-visible spectroscopy,fluorescence titration,and cyclic voltammetry.The results demonstrated that both complexes 1 and 2 can intercalate into CT-DNA molecules,thereby inhibiting bacterial proliferation to achieve the antibacterial effects.CCDC:2401116,1;2401117,2.
基金The project was supported by the National Key R&D Program of China(2021YFF0500702)Natural Science Foundation of Shanghai(22JC1404200)+3 种基金Program of Shanghai Academic/Technology Research Leader(20XD1404000)Natural Science Foundation of China(U22B20136,22293023)Science and Technology Major Project of Inner Mongolia(2021ZD0042)the Youth Innovation Promotion Association of CAS。
文摘Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by varying the calcination temperature of anatase-TiO_(2).Structural characterizations revealed that a distinct TiO_(x) coating on the Ni nanoparticles(NPs)was evident for Ni/TiO_(2)-700 catalyst due to strong metal-support interaction.It is observed that the TiOx overlayer gradually disappeared as the ratio of rutile/anatase increased,thereby enhancing the exposure of Ni active sites.The exposed Ni sites enhanced visible light absorption and boosted the dissociation capability of CH4,which led to the much elevated catalytic activity for Ni/TiO_(2)-950 in which rutile dominated.Therefore,the catalytic activity of solar-driven DRM reaction was significantly influenced by the rutile/anatase ratio.Ni/TiO_(2)-950,characterized by a predominant rutile phase,exhibited the highest DRM reactivity,with remarkable H_(2) and CO production rates reaching as high as 87.4 and 220.2 mmol/(g·h),respectively.These rates were approximately 257 and 130 times higher,respectively,compared to those obtained on Ni/TiO_(2)-700 with anatase.This study suggests that the optimization of crystal structure of TiO_(2) support can effectively enhance the performance of photothermal DRM reaction.