期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于QPSO-RVM的模拟电路故障预测方法 被引量:27
1
作者 张朝龙 何怡刚 +2 位作者 邓芳明 袁莉芬 何威 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第8期1751-1757,共7页
提出了一种可应用于模拟电路故障预测的方法。通过提取被测电路的频域响应信号,计算皮尔逊相关系数,从而表征电路元件的健康度;在获取元件在不同时间点的健康度数据的基础上,推导出电路元件发生故障时的健康度阈值;将经量子粒子群算法... 提出了一种可应用于模拟电路故障预测的方法。通过提取被测电路的频域响应信号,计算皮尔逊相关系数,从而表征电路元件的健康度;在获取元件在不同时间点的健康度数据的基础上,推导出电路元件发生故障时的健康度阈值;将经量子粒子群算法优化的相关向量机算法用于故障预测,预测各个时间点的元件健康度变化轨迹并估计模拟电路的剩余有用寿命。该预测方法计算简单、通用性强,适用于实时预测。故障预测仿真实验与实例实验证明了方法的有效性与先进性。 展开更多
关键词 模拟电路 剩余有用寿命 健康度 皮尔逊相关系数 相关向量机 量子粒子群 Pearson product-moment correlation coefficient(PPMCC) relevance vector machine(RVM) quantum-behaved particle swarm optimization(QPSO)
在线阅读 下载PDF
电子系统状态时间序列预测的优化相关向量机方法 被引量:7
2
作者 范庚 马登武 +1 位作者 吴明辉 孟上 《系统工程与电子技术》 EI CSCD 北大核心 2013年第9期2011-2015,共5页
针对电子系统状态时间序列的预测问题,提出一种基于量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)的相关向量机(relevance vector machine,RVM)方法。对电子系统状态时间序列进行相空间重构,建立了RVM回归预测模型... 针对电子系统状态时间序列的预测问题,提出一种基于量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)的相关向量机(relevance vector machine,RVM)方法。对电子系统状态时间序列进行相空间重构,建立了RVM回归预测模型;以交叉验证误差最小作为优化目标,将RVM核参数表示为量子空间中的粒子位置,采用QPSO算法实现RVM模型参数的自动优化选择。雷达发射机状态时间序列预测实例表明,相比已有方法,所提方法具有更高的预测精度;同时,能够输出预测值的置信区间,有利于对电子系统未来健康状况做出更加可靠的判断。 展开更多
关键词 状态时间序列预测 电子系统 相关向量机 交叉验证 量子粒子群优化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部