期刊文献+
共找到3,308篇文章
< 1 2 166 >
每页显示 20 50 100
Infrared aircraft few-shot classification method based on cross-correlation network
1
作者 HUANG Zhen ZHANG Yong GONG Jin-Fu 《红外与毫米波学报》 北大核心 2025年第1期103-111,共9页
In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This... In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This method combines two core modules:a simple parameter-free self-attention and cross-attention.By analyzing the self-correlation and cross-correlation between support images and query images,it achieves effective classification of infrared aircraft under few-shot conditions.The proposed cross-correlation network integrates these two modules and is trained in an end-to-end manner.The simple parameter-free self-attention is responsible for extracting the internal structure of the image while the cross-attention can calculate the cross-correlation between images further extracting and fusing the features between images.Compared with existing few-shot infrared target classification models,this model focuses on the geometric structure and thermal texture information of infrared images by modeling the semantic relevance between the features of the support set and query set,thus better attending to the target objects.Experimental results show that this method outperforms existing infrared aircraft classification methods in various classification tasks,with the highest classification accuracy improvement exceeding 3%.In addition,ablation experiments and comparative experiments also prove the effectiveness of the method. 展开更多
关键词 infrared imaging aircraft classification few-shot learning parameter-free attention cross attention
在线阅读 下载PDF
Urban tree species classification based on multispectral airborne LiDAR
2
作者 HU Pei-Lun CHEN Yu-Wei +3 位作者 Mohammad Imangholiloo Markus Holopainen WANG Yi-Cheng Juha Hyyppä 《红外与毫米波学报》 北大核心 2025年第2期211-216,共6页
Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services... Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy. 展开更多
关键词 multispectral airborne LiDAR machine learning tree species classification
在线阅读 下载PDF
Machine learning strategies for lithostratigraphic classification based on geochemical sampling data: A case study in area of Chahanwusu River, Qinghai Province, China 被引量:7
3
作者 ZHANG Bao-yi LI Man-yi +4 位作者 LI Wei-xia JIANG Zheng-wen Umair KHAN WANG Li-fang WANG Fan-yun 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1422-1447,共26页
Based on the complex correlation between the geochemical element distribution patterns at the surface and the types of bedrock and the powerful capabilities in capturing subtle of machine learning algorithms,four mach... Based on the complex correlation between the geochemical element distribution patterns at the surface and the types of bedrock and the powerful capabilities in capturing subtle of machine learning algorithms,four machine learning algorithms,namely,decision tree(DT),random forest(RF),XGBoost(XGB),and LightGBM(LGBM),were implemented for the lithostratigraphic classification and lithostratigraphic prediction of a quaternary coverage area based on stream sediment geochemical sampling data in the Chahanwusu River of Dulan County,Qinghai Province,China.The local Moran’s I to represent the features of spatial autocorrelations,and terrain factors to represent the features of surface geological processes,were calculated as additional features.The accuracy,precision,recall,and F1 scores were chosen as the evaluation indices and Voronoi diagrams were applied for visualization.The results indicate that XGB and LGBM models both performed well.They not only obtained relatively satisfactory classification performance but also predicted lithostratigraphic types of the Quaternary coverage area that are essentially consistent with their neighborhoods which have the known types.It is feasible to classify the lithostratigraphic types through the concentrations of geochemical elements in the sediments,and the XGB and LGBM algorithms are recommended for lithostratigraphic classification. 展开更多
关键词 machine learning geochemical sampling lithostratigraphic classification lithostratigraphic prediction BEDROCK
在线阅读 下载PDF
Chinese micro-blog sentiment classification through a novel hybrid learning model 被引量:2
4
作者 LI Fang-fang WANG Huan-ting +3 位作者 ZHAO Rong-chang LIU Xi-yao WANG Yan-zhen ZOU Bei-ji 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2322-2330,共9页
With the rising and spreading of micro-blog, the sentiment classification of short texts has become a research hotspot. Some methods have been developed in the past decade. However, since the Chinese and English are d... With the rising and spreading of micro-blog, the sentiment classification of short texts has become a research hotspot. Some methods have been developed in the past decade. However, since the Chinese and English are different in language syntax, semantics and pragmatics, sentiment classification methods that are effective for English twitter may fail on Chinese micro-blog. In addition, the colloquialism and conciseness of short Chinese texts introduces additional challenges to sentiment classification. In this work, a novel hybrid learning model was proposed for sentiment classification of Chinese micro-blogs, which included two stages. In the first stage, emotional scores were calculated over the whole dataset by utilizing an improved Chinese-oriented sentiment dictionary classification method. Data with extremely high or low scores were directly labeled. In the second stage, the remaining data were labeled by using an integrated classification method based on sentiment dictionary, support vector machine(SVM) and k-nearest neighbor(KNN). An improved feature selection method was adopted to enhance the discriminative power of the selected features. The two-stage hybrid framework made the proposed method effective for sentiment classification of Chinese micro-blogs. Experiments on the COAE2014(Chinese Opinion Analysis Evaluation 2014) dataset show that the proposed method outperforms other schemes. 展开更多
关键词 CHINESE micro-blog SHORT TEXT HYBRID learning SENTIMENT classification
在线阅读 下载PDF
Progressive transductive learning pattern classification via single sphere
5
作者 Xue Zhenxia Liu Sanyang Liu Wanli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期643-650,共8页
In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the label... In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the labels of unlabeled ones, that is, to develop transductive learning. In this article, based on Pattern classification via single sphere (SSPC), which seeks a hypersphere to separate data with the maximum separation ratio, a progressive transductive pattern classification method via single sphere (PTSSPC) is proposed to construct the classifier using both the labeled and unlabeled data. PTSSPC utilize the additional information of the unlabeled samples and obtain better classification performance than SSPC when insufficient labeled data information is available. Experiment results show the algorithm can yields better performance. 展开更多
关键词 pattern recognition semi-supervised learning transductive learning classification support vector machine support vector domain description.
在线阅读 下载PDF
Video learning based image classification method for object recognition
6
作者 LEE Hong-ro SHIN Yong-ju 《Journal of Central South University》 SCIE EI CAS 2013年第9期2399-2406,共8页
Automatic image classification is the first step toward semantic understanding of an object in the computer vision area.The key challenge of problem for accurate object recognition is the ability to extract the robust... Automatic image classification is the first step toward semantic understanding of an object in the computer vision area.The key challenge of problem for accurate object recognition is the ability to extract the robust features from various viewpoint images and rapidly calculate similarity between features in the image database or video stream.In order to solve these problems,an effective and rapid image classification method was presented for the object recognition based on the video learning technique.The optical-flow and RANSAC algorithm were used to acquire scene images from each video sequence.After the selection of scene images,the local maximum points on comer of object around local area were found using the Harris comer detection algorithm and the several attributes from local block around each feature point were calculated by using scale invariant feature transform (SIFT) for extracting local descriptor.Finally,the extracted local descriptor was learned to the three-dimensional pyramid match kernel.Experimental results show that our method can extract features in various multi-viewpoint images from query video and calculate a similarity between a query image and images in the database. 展开更多
关键词 image classification multi-viewpoint image feature extraction video learning
在线阅读 下载PDF
文本分类中Prompt Learning方法研究综述 被引量:3
7
作者 顾勋勋 刘建平 +1 位作者 邢嘉璐 任海玉 《计算机工程与应用》 CSCD 北大核心 2024年第11期50-61,共12页
文本分类是自然语言处理中的一项基础任务,在情感分析、新闻分类等领域具有重要应用。相较于传统的机器学习和深度学习模型,提示学习可以在数据不足的情况下通过构建提示来进行文本分类。近年来,GPT-3的出现推动了提示学习方法的发展,... 文本分类是自然语言处理中的一项基础任务,在情感分析、新闻分类等领域具有重要应用。相较于传统的机器学习和深度学习模型,提示学习可以在数据不足的情况下通过构建提示来进行文本分类。近年来,GPT-3的出现推动了提示学习方法的发展,并且在文本分类领域取得了显著的进展。对以往的文本分类方法进行简要梳理,分析其存在的问题与不足;阐述了提示学习的发展进程,以及构建提示模板的方法,并对用于文本分类的提示学习方法研究及成果进行了介绍和总结。最后,对提示学习在文本分类领域的发展趋势和有待进一步研究的难点进行了总结和展望。 展开更多
关键词 提示学习 文本分类 情绪分析 新闻分类
在线阅读 下载PDF
一种采用渐进学习模式的SBS-CLearning分类算法 被引量:3
8
作者 申彦 朱玉全 宋新平 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第6期696-703,共8页
针对Learn++. NSE算法中多个基分类器之间相互独立、未利用前阶段学习结果辅助后续阶段学习而准确率较低的问题,借鉴人类的学习过程,优化Learn++. NSE算法内部的学习机制,转变基分类器的独立学习为渐进学习,提出了一种采用渐进学习模式... 针对Learn++. NSE算法中多个基分类器之间相互独立、未利用前阶段学习结果辅助后续阶段学习而准确率较低的问题,借鉴人类的学习过程,优化Learn++. NSE算法内部的学习机制,转变基分类器的独立学习为渐进学习,提出了一种采用渐进学习模式的SBS-CLearning分类算法.分析了Learn++. NSE算法的不足.给出了SBS-CLearning算法的步骤,该算法在前阶段基分类器的基础之上先增量学习,再完成最终的加权集成.在测试数据集上对比分析了Learn++. NSE与SBSCLearning的分类准确率.试验结果表明:SBS-CLearning算法吸收了增量学习与集成学习的优势,相比Learn++. NSE提高了分类准确率.针对SEA人工数据集,SBS-CLearning,Learn++. NSE的平均分类准确率分别为0. 982,0. 976.针对旋转棋盘真实数据集,在Constant,Sinusoidal,Pulse环境下,SBS-CLearning的平均分类准确率分别为0. 624,0. 655,0. 662,而Learn++. NSE分别为0. 593,0. 633,0. 629. 展开更多
关键词 大数据挖掘 分类算法 集成学习 增量学习 概念漂移
在线阅读 下载PDF
E-learning评论文本的情感分类研究 被引量:8
9
作者 潘怡 叶辉 邹军华 《开放教育研究》 CSSCI 北大核心 2014年第2期88-94,共7页
自本世纪初起,E—learning作为一种灵活、丰富、高效的学习方式,被越来越多的学习者接受,而伴随着学习技术的逐步成熟,学习者对E—learning应用的要求也从最初的知识推送提升到能够在讲授者与学习者之间搭建有效的沟通桥梁,将零反馈的... 自本世纪初起,E—learning作为一种灵活、丰富、高效的学习方式,被越来越多的学习者接受,而伴随着学习技术的逐步成熟,学习者对E—learning应用的要求也从最初的知识推送提升到能够在讲授者与学习者之间搭建有效的沟通桥梁,将零反馈的封闭式学习变成多反馈的协作学习。E—learning的评论信息隐含了学习者在学习中遇到的问题和建议,从中可挖掘学习者对学习资源及授课者的意见。这对改善教学模式、完善教学支持服务意义重要。现有E—learning系统所提供的海量评论信息中正面评论与负面评论夹杂,给挖掘学习者的真实意见和需求带来困难。本文对文本情感分类过程进行归纳,构建了一种情感分类应用模型,在完成预处理、创建词典、提取情感特征后实现了一个情感分类引擎,并将该引擎与实际系统整合。改进后的系统能够将学习者的评论文本自动分为正面评论、负面评论和中性评论,实际性能及用户体验评价结果表明,新的基于情感单元的情感分类方法能满足E—learning评论文本的情感分类需求。 展开更多
关键词 E-learning 评论文本 情感分类 情感单元
在线阅读 下载PDF
国际E-Learning研究热点演化及趋势探测 被引量:9
10
作者 李干 袁勤俭 +1 位作者 舒小昀 陈滔娜 《现代远程教育研究》 CSSCI 2015年第4期41-52,103,共13页
E-Learning自诞生以来,受到商业组织和学术机构的广泛关注。利用共词分析、聚类分析、社会网络分析、网络社区分析等方法对Web of Science数据库收录的E-Learning研究文献进行的深度剖析发现:国际E-Learning研究发展大体可以分为三个阶... E-Learning自诞生以来,受到商业组织和学术机构的广泛关注。利用共词分析、聚类分析、社会网络分析、网络社区分析等方法对Web of Science数据库收录的E-Learning研究文献进行的深度剖析发现:国际E-Learning研究发展大体可以分为三个阶段:1968-1993年,E-Learning相关研究开始出现,但研究文献较少,以案例研究等定性研究方法为主,处于以概念探讨为主的初级研究阶段;1994-2003年,研究文献增多,研究方法逐渐偏向于定量研究,开始形成较为稳定的研究主题领域,并逐渐出现主题分化和主题融合;2004-2013年,研究主题不断细化,研究深度进一步增强。总体来看,国际E-Learning研究经历从"技术导向"到"行为导向"再到"行为和技术导向"相融合、从单一强调"学习者"或"教学者"的自我导向学习研究到同时强调"教学者"和"学习者"的互动协作学习研究等主题演化特征,跨文化、跨学科研究成为全球化背景下国际E-Learning研究方向,研究模型设计越来越注重中介变量和调节变量的作用。混合式网络学习环境研究、强调个性化和智能化的E-Learning系统研究、基于认知心理的学习效能研究可能成为未来E-Learning研究的潜在热点领域。 展开更多
关键词 E-learning 研究进展 主题分类 热点变迁 趋势探测
在线阅读 下载PDF
e-Learning中基于支持向量机的个性化学习资源推送 被引量:3
11
作者 何升 温兆麟 《计算机工程与设计》 CSCD 北大核心 2007年第9期2120-2122,共3页
e-Learning这种能满足个性化、适应性学习要求的重要学习方式,要求能协作感知学习者的学习情况,能依据学习情况自动推送个性化学习资源。将支持向量机这种机器学习方法应用到e-Learning中,并结合e-Learning系统的应用情况,对于学习样本... e-Learning这种能满足个性化、适应性学习要求的重要学习方式,要求能协作感知学习者的学习情况,能依据学习情况自动推送个性化学习资源。将支持向量机这种机器学习方法应用到e-Learning中,并结合e-Learning系统的应用情况,对于学习样本的选取和预处理,以及支持向量机训练算法等进行了应用研究。解决了学习者学习情况评价分类,根据分类结果实现个性化学习资源的主动推送问题。 展开更多
关键词 机器学习 支持向量机 学习评价分类 个性化 学习资源推送
在线阅读 下载PDF
基于生成模型的Q-learning二分类算法 被引量:1
12
作者 尚志刚 徐若灏 +2 位作者 乔康加 杨莉芳 李蒙蒙 《计算机应用研究》 CSCD 北大核心 2020年第11期3326-3329,3333,共5页
对于二分类问题,基于判别模型的分类器一般都是寻找一条最优判决边界,容易受到数据波动的影响。针对该问题提出一种基于生成模型的Q-learning二分类算法(BGQ-learning),将状态和动作分开编码,得到对应各类的判决函数,增加了决策空间的... 对于二分类问题,基于判别模型的分类器一般都是寻找一条最优判决边界,容易受到数据波动的影响。针对该问题提出一种基于生成模型的Q-learning二分类算法(BGQ-learning),将状态和动作分开编码,得到对应各类的判决函数,增加了决策空间的灵活性,同时在求解参数时,采用最小二乘时序差分(TD)算法和半梯度下降法的组合优化方法,加速了参数的收敛速度。设计实验对比了BGQ-learning算法与三种经典分类器以及一种新颖的分类器的分类性能,在UCI数据库七个数据集上的测试结果表明,该算法有着优良的稳定性以及良好的分类精确度。 展开更多
关键词 Q-learning 生成模型 二分类 最小二乘时序差分算法 半梯度下降法
在线阅读 下载PDF
E-Learning中的人脸检测研究
13
作者 王万森 郭春娟 《小型微型计算机系统》 CSCD 北大核心 2012年第2期271-274,共4页
本文以情绪认知交互的E-Learning系统中的学习者表情识别为背景,在Adaboost算法中引入了分类风险系数,并在每次迭代权值更新后的权值归一化过程中,将正负例样本分开进行权值归一化处理,保证了算法能始终给予正例样本更多的重视.最终将... 本文以情绪认知交互的E-Learning系统中的学习者表情识别为背景,在Adaboost算法中引入了分类风险系数,并在每次迭代权值更新后的权值归一化过程中,将正负例样本分开进行权值归一化处理,保证了算法能始终给予正例样本更多的重视.最终将基于肤色和改进的Adaboost算法相结合用于E-Learning情境中的学习者人脸检测,取得了较好的实验效果.为后续的表情特征提取工作提供了重要的信息. 展开更多
关键词 E-learning 人脸检测 ADABOOST算法 分类风险系数 肤色检测
在线阅读 下载PDF
A combined algorithm of K-means and MTRL for multi-class classification 被引量:2
14
作者 XUE Mengfan HAN Lei PENG Dongliang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期875-885,共11页
The basic idea of multi-class classification is a disassembly method,which is to decompose a multi-class classification task into several binary classification tasks.In order to improve the accuracy of multi-class cla... The basic idea of multi-class classification is a disassembly method,which is to decompose a multi-class classification task into several binary classification tasks.In order to improve the accuracy of multi-class classification in the case of insufficient samples,this paper proposes a multi-class classification method combining K-means and multi-task relationship learning(MTRL).The method first uses the split method of One vs.Rest to disassemble the multi-class classification task into binary classification tasks.K-means is used to down sample the dataset of each task,which can prevent over-fitting of the model while reducing training costs.Finally,the sampled dataset is applied to the MTRL,and multiple binary classifiers are trained together.With the help of MTRL,this method can utilize the inter-task association to train the model,and achieve the purpose of improving the classification accuracy of each binary classifier.The effectiveness of the proposed approach is demonstrated by experimental results on the Iris dataset,Wine dataset,Multiple Features dataset,Wireless Indoor Localization dataset and Avila dataset. 展开更多
关键词 machine learning MULTI-CLASS classification K-MEANS MULTI-TASK RELATIONSHIP learning (MTRL) OVER-FITTING
在线阅读 下载PDF
Deep learning-based LPI radar signals analysis and identification using a Nyquist Folding Receiver architecture 被引量:2
15
作者 Tao Wan Kai-li Jiang +1 位作者 Hao Ji Bin Tang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期196-209,共14页
Nyquist Folding Receiver(NYFR)is a perceptron structure that realizes a low probability of intercept(LPI)signal analog to information.Aiming at the problem of LPI radar signal receiving,the time domain,frequency domai... Nyquist Folding Receiver(NYFR)is a perceptron structure that realizes a low probability of intercept(LPI)signal analog to information.Aiming at the problem of LPI radar signal receiving,the time domain,frequency domain,and time-frequency domain problems of signals intercepted by NYFR structure are studied.Combined with the time-frequency analysis(TFA)method,a radar recognition scheme based on deep learning(DL)is introduced,which can reliably classify common LPI radar signals.First,the structure of NYFR and its characteristics in the time domain,frequency domain,and time and frequency domain are analyzed.Then,the received signal is then converted into a time-frequency image(TFI).Finally,four kinds of DL algorithms are used to classify LPI radar signals.Simulation results demonstrate the correctness of the NYFR structure,and the effectiveness of the proposed recognition method is verified by comparison experiments. 展开更多
关键词 Nyquist folding receiver ULTRA-WIDEBAND Deep learning Time-frequency analysis IDENTIFICATION classification
在线阅读 下载PDF
Multi-channel electromyography pattern classification using deep belief networks for enhanced user experience 被引量:1
16
作者 SHIM Hyeon-min LEE Sangmin 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1801-1808,共8页
An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-v... An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-varying characteristics.Therefore, in several previous studies, various machine-learning methods have been applied. A DBN is a fast, greedy learning algorithm that can find a fairly good set of weights rapidly, even in deep networks with a large number of parameters and many hidden layers. To evaluate this model, we acquired EMG signals, extracted their features, and then compared the model with the DBN and other conventional classifiers. The accuracy of the DBN is higher than that of the other algorithms. The classification performance of the DBN model designed is approximately 88.60%. It is 7.55%(p=9.82×10-12) higher than linear discriminant analysis(LDA) and 2.89%(p=1.94×10-5) higher than support vector machine(SVM). Further, the DBN is better than shallow learning algorithms or back propagation(BP), and this model is effective for an EMG-based user-interfaced system. 展开更多
关键词 electromyography(EMG) pattern classification feature extraction deep learning deep belief network(DBN)
在线阅读 下载PDF
A review of addressing class noise problems of remote sensing classification 被引量:2
17
作者 FENG Wei LONG Yijun +1 位作者 WANG Shuo QUAN Yinghui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期36-46,共11页
The development of image classification is one of the most important research topics in remote sensing. The prediction accuracy depends not only on the appropriate choice of the machine learning method but also on the... The development of image classification is one of the most important research topics in remote sensing. The prediction accuracy depends not only on the appropriate choice of the machine learning method but also on the quality of the training datasets. However, real-world data is not perfect and often suffers from noise. This paper gives an overview of noise filtering methods. Firstly, the types of noise and the consequences of class noise on machine learning are presented. Secondly, class noise handling methods at both the data level and the algorithm level are introduced. Then ensemble-based class noise handling methods including class noise removal, correction, and noise robust ensemble learners are presented. Finally, a summary of existing data-cleaning techniques is given. 展开更多
关键词 class noise label noise mislabeled classification ensemble learning remote sensing
在线阅读 下载PDF
An improved brain emotional learning algorithm for accurate and efficient data analysis 被引量:1
18
作者 梅英 谭冠政 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1084-1098,共15页
To overcome the deficiencies of high computational complexity and low convergence speed in traditional neural networks, a novel bio-inspired machine learning algorithm named brain emotional learning (BEL) is introdu... To overcome the deficiencies of high computational complexity and low convergence speed in traditional neural networks, a novel bio-inspired machine learning algorithm named brain emotional learning (BEL) is introduced. BEL mimics the emotional learning mechanism in brain which has the superior features of fast learning and quick reacting. To further improve the performance of BEL in data analysis, genetic algorithm (GA) is adopted for optimally tuning the weights and biases of amygdala and orbitofrontal cortex in BEL neural network. The integrated algorithm named GA-BEL combines the advantages of the fast learning of BEL, and the global optimum solution of GA. GA-BEL has been tested on a real-world chaotic time series of geomagnetic activity index for prediction, eight benchmark datasets of university California at Irvine (UCI) and a functional magnetic resonance imaging (fMRI) dataset for classifications. The comparisons of experimental results have shown that the proposed GA-BEL algorithm is more accurate than the original BEL in prediction, and more effective when dealing with large-scale classification problems. Further, it outperforms most other traditional algorithms in terms of accuracy and execution speed in both prediction and classification applications. 展开更多
关键词 PREDICTION classification brain emotional learning genetic algorithm
在线阅读 下载PDF
Evaluation Criteria Based on Mutual Information for Classifications Including Rejected Class 被引量:6
19
作者 HU Bao-Gang WANG Yong 《自动化学报》 EI CSCD 北大核心 2008年第11期1396-1403,共8页
与用表演措施的常规评估标准不同,信息理论基于在场的标准在机器学习的应用的一个唯一的有益的特征。然而,我们仍然远非正在拥有熵类型标准的深入的理解,说,在与常规基于表演的标准的关系。这份报纸学习通用分类问题,它包括一拒绝... 与用表演措施的常规评估标准不同,信息理论基于在场的标准在机器学习的应用的一个唯一的有益的特征。然而,我们仍然远非正在拥有熵类型标准的深入的理解,说,在与常规基于表演的标准的关系。这份报纸学习通用分类问题,它包括一拒绝,或未知,班。我们在场基本公式和分类基于信息学习的图解的图理论。一个靠近形式的方程为通用分类问题在规范的相互的信息和扩充混乱矩阵之间被导出。敏感方程的三个定理和定理集合为学习在相互的信息和常规表演索引之间的关系被给。我们也与常规标准比较举与相互的信息标准的优点和限制有关的数字例子和几讨论。 展开更多
关键词 评价标准 信息分类 自动化技术 熵值
在线阅读 下载PDF
Novel magnetic field computation model in pattern classification
20
作者 Feng Pan Xiaoting Li +3 位作者 Ting Long Xiaohui Hu Tingting Ren Junping Du 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期862-869,共8页
Field computation, an emerging computation technique, has inspired passion of intelligence science research. A novel field computation model based on the magnetic field theory is constructed. The proposed magnetic fie... Field computation, an emerging computation technique, has inspired passion of intelligence science research. A novel field computation model based on the magnetic field theory is constructed. The proposed magnetic field computation (MFC) model consists of a field simulator, a non-derivative optimization algo- rithm and an auxiliary data processing unit. The mathematical model is deduced and proved that the MFC model is equivalent to a quadratic discriminant function. Furthermore, the finite element prototype is derived, and the simulator is developed, combining with particle swarm optimizer for the field configuration. Two benchmark classification experiments are studied in the numerical experiment, and one notable advantage is demonstrated that less training samples are required and a better generalization can be achieved. 展开更多
关键词 magnetic field computation (MFC) field computation particle swarm optimization (PSO) finite element analysis ma- chine learning and pattern classification.
在线阅读 下载PDF
上一页 1 2 166 下一页 到第
使用帮助 返回顶部