A space-resolved EUV spectrometer for measuring the one-dimensional distribution of impurity line emissions in Large Helical Device (LHD) has been upgraded to measure two- dimensional distributions of impurity line ...A space-resolved EUV spectrometer for measuring the one-dimensional distribution of impurity line emissions in Large Helical Device (LHD) has been upgraded to measure two- dimensional distributions of impurity line emissions with an extension of working wavelength range to 30-650% The two-dimensional measurement is performed by scanning the observation chord horizontally. A rectangular plasma region of 520 × 700 mm2 in vertical and horizontal sizes can be observed during a single horizontal scan. The horizontal scan requires a time duration of 5 s at least. The spatial resolution is 10 mm in the vertical direction when a spatial-resolution slit of 0.2 mm in width is adopted. Although a spatial resolution in the toroidal direction is 75 mm, it is a function of CCD exposure time and horizontal scanning speed. Two-dimensional distribution of EUV line emissions from several impurities has been successfully observed for the first time from steady discharges in LHD. In this paper two-dimensional distributions of He II (303.78A), C V (40.27A), C VI (33.73A) and Fe XX (132.85A) located at different radial positions are presented with simple analysis on the magnetic field structure of LHD.展开更多
基金partially carried out under the LHD project financial support (NIFS12ULPP010)partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (No. 11261140328)
文摘A space-resolved EUV spectrometer for measuring the one-dimensional distribution of impurity line emissions in Large Helical Device (LHD) has been upgraded to measure two- dimensional distributions of impurity line emissions with an extension of working wavelength range to 30-650% The two-dimensional measurement is performed by scanning the observation chord horizontally. A rectangular plasma region of 520 × 700 mm2 in vertical and horizontal sizes can be observed during a single horizontal scan. The horizontal scan requires a time duration of 5 s at least. The spatial resolution is 10 mm in the vertical direction when a spatial-resolution slit of 0.2 mm in width is adopted. Although a spatial resolution in the toroidal direction is 75 mm, it is a function of CCD exposure time and horizontal scanning speed. Two-dimensional distribution of EUV line emissions from several impurities has been successfully observed for the first time from steady discharges in LHD. In this paper two-dimensional distributions of He II (303.78A), C V (40.27A), C VI (33.73A) and Fe XX (132.85A) located at different radial positions are presented with simple analysis on the magnetic field structure of LHD.